summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.ecrc1
-rw-r--r--.github/workflows/build.yml21
-rw-r--r--.gitmodules3
-rw-r--r--CMakeLists.txt171
-rw-r--r--ggml-backend.c5
-rw-r--r--ggml-kompute.cpp1990
-rw-r--r--ggml-kompute.h46
m---------kompute0
-rw-r--r--kompute-shaders/common.comp102
-rw-r--r--kompute-shaders/op_add.comp58
-rw-r--r--kompute-shaders/op_addrow.comp25
-rw-r--r--kompute-shaders/op_cpy_f16_f16.comp52
-rw-r--r--kompute-shaders/op_cpy_f16_f32.comp52
-rw-r--r--kompute-shaders/op_cpy_f32_f16.comp52
-rw-r--r--kompute-shaders/op_cpy_f32_f32.comp52
-rw-r--r--kompute-shaders/op_diagmask.comp30
-rw-r--r--kompute-shaders/op_gelu.comp22
-rw-r--r--kompute-shaders/op_getrows.comp17
-rw-r--r--kompute-shaders/op_getrows_f16.comp31
-rw-r--r--kompute-shaders/op_getrows_q4_0.comp38
-rw-r--r--kompute-shaders/op_getrows_q4_1.comp39
-rw-r--r--kompute-shaders/op_getrows_q6_k.comp44
-rw-r--r--kompute-shaders/op_mul.comp52
-rw-r--r--kompute-shaders/op_mul_mat_f16.comp67
-rw-r--r--kompute-shaders/op_mul_mat_mat_f32.comp51
-rw-r--r--kompute-shaders/op_mul_mat_q4_0.comp33
-rw-r--r--kompute-shaders/op_mul_mat_q4_1.comp35
-rw-r--r--kompute-shaders/op_mul_mat_q6_k.comp94
-rw-r--r--kompute-shaders/op_mul_mat_q8_0.comp73
-rw-r--r--kompute-shaders/op_mul_mv_q_n.comp48
-rw-r--r--kompute-shaders/op_mul_mv_q_n_pre.comp22
-rw-r--r--kompute-shaders/op_norm.comp84
-rw-r--r--kompute-shaders/op_relu.comp21
-rw-r--r--kompute-shaders/op_rmsnorm.comp53
-rw-r--r--kompute-shaders/op_rope_f16.comp73
-rw-r--r--kompute-shaders/op_rope_f32.comp73
-rw-r--r--kompute-shaders/op_scale.comp19
-rw-r--r--kompute-shaders/op_scale_8.comp23
-rw-r--r--kompute-shaders/op_silu.comp22
-rw-r--r--kompute-shaders/op_softmax.comp56
-rw-r--r--kompute-shaders/rope_common.comp67
-rw-r--r--llama.cpp35
-rw-r--r--llama.h3
-rw-r--r--tests/test-backend-ops.cpp430
-rw-r--r--tests/test-c.c4
45 files changed, 4270 insertions, 19 deletions
diff --git a/.ecrc b/.ecrc
index b682057d..a3351f4e 100644
--- a/.ecrc
+++ b/.ecrc
@@ -1,4 +1,5 @@
{
+ "Exclude": ["^\\.gitmodules$"],
"Disable": {
"IndentSize": true
}
diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml
index e5e435a7..fb719a55 100644
--- a/.github/workflows/build.yml
+++ b/.github/workflows/build.yml
@@ -337,6 +337,7 @@ jobs:
OPENCL_VERSION: 2023.04.17
CLBLAST_VERSION: 1.6.0
SDE_VERSION: 9.33.0-2024-01-07
+ VULKAN_VERSION: 1.3.261.1
strategy:
matrix:
@@ -353,6 +354,8 @@ jobs:
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
- build: 'openblas'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
+ - build: 'kompute'
+ defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
steps:
- name: Clone
@@ -361,6 +364,12 @@ jobs:
with:
fetch-depth: 0
+ - name: Clone Kompute submodule
+ id: clone_kompute
+ if: ${{ matrix.build == 'kompute' }}
+ run: |
+ git submodule update --init kompute
+
- name: Download OpenCL SDK
id: get_opencl
if: ${{ matrix.build == 'clblast' }}
@@ -395,6 +404,15 @@ jobs:
$lib = $(join-path $msvc 'bin\Hostx64\x64\lib.exe')
& $lib /machine:x64 "/def:${env:RUNNER_TEMP}/openblas/lib/libopenblas.def" "/out:${env:RUNNER_TEMP}/openblas/lib/openblas.lib" /name:openblas.dll
+ - name: Install Vulkan SDK
+ id: get_vulkan
+ if: ${{ matrix.build == 'kompute' }}
+ run: |
+ curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
+ & "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
+ Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
+ Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
+
- name: Build
id: cmake_build
run: |
@@ -432,7 +450,8 @@ jobs:
- name: Test
id: cmake_test
- if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # not all machines have native AVX-512
+ # not all machines have native AVX-512
+ if: ${{ matrix.build != 'clblast' && matrix.build != 'kompute' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }}
run: |
cd build
ctest -L main -C Release --verbose --timeout 900
diff --git a/.gitmodules b/.gitmodules
new file mode 100644
index 00000000..b7e8b8ff
--- /dev/null
+++ b/.gitmodules
@@ -0,0 +1,3 @@
+[submodule "kompute"]
+ path = kompute
+ url = https://github.com/nomic-ai/kompute.git
diff --git a/CMakeLists.txt b/CMakeLists.txt
index ed8f39c6..65a6f397 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -103,6 +103,7 @@ option(LLAMA_VULKAN "llama: use Vulkan"
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF)
+option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
option(LLAMA_MPI "llama: use MPI" OFF)
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
option(LLAMA_SYCL "llama: use SYCL" OFF)
@@ -484,7 +485,6 @@ if (LLAMA_HIPBLAS)
endif()
endif()
-
if (LLAMA_SYCL)
if ( NOT DEFINED ENV{ONEAPI_ROOT})
message(FATAL_ERROR "Not detect ENV {ONEAPI_ROOT}, please install oneAPI & source it, like: source /opt/intel/oneapi/setvars.sh")
@@ -510,6 +510,160 @@ if (LLAMA_SYCL)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} sycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
endif()
+if (LLAMA_KOMPUTE)
+ add_compile_definitions(VULKAN_HPP_DISPATCH_LOADER_DYNAMIC=1)
+ find_package(Vulkan COMPONENTS glslc REQUIRED)
+ find_program(glslc_executable NAMES glslc HINTS Vulkan::glslc)
+ if (NOT glslc_executable)
+ message(FATAL_ERROR "glslc not found")
+ endif()
+
+ function(compile_shader)
+ set(options)
+ set(oneValueArgs)
+ set(multiValueArgs SOURCES)
+ cmake_parse_arguments(compile_shader "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
+ foreach(source ${compile_shader_SOURCES})
+ get_filename_component(filename ${source} NAME)
+ set(spv_file ${filename}.spv)
+ add_custom_command(
+ OUTPUT ${spv_file}
+ DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/${source}
+ ${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/common.comp
+ ${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_getrows.comp
+ ${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n_pre.comp
+ ${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n.comp
+ COMMAND ${glslc_executable} --target-env=vulkan1.2 -o ${spv_file} ${CMAKE_CURRENT_SOURCE_DIR}/${source}
+ COMMENT "Compiling ${source} to ${spv_file}"
+ )
+
+ get_filename_component(RAW_FILE_NAME ${spv_file} NAME)
+ set(FILE_NAME "shader${RAW_FILE_NAME}")
+ string(REPLACE ".comp.spv" ".h" HEADER_FILE ${FILE_NAME})
+ string(TOUPPER ${HEADER_FILE} HEADER_FILE_DEFINE)
+ string(REPLACE "." "_" HEADER_FILE_DEFINE "${HEADER_FILE_DEFINE}")
+ set(OUTPUT_HEADER_FILE "${HEADER_FILE}")
+ message(STATUS "${HEADER_FILE} generating ${HEADER_FILE_DEFINE}")
+ if(CMAKE_GENERATOR MATCHES "Visual Studio")
+ add_custom_command(
+ OUTPUT ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_BINARY_DIR}/bin/$<CONFIG>/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
+ DEPENDS ${spv_file} xxd
+ COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/$<CONFIG>/xxd"
+ )
+ else()
+ add_custom_command(
+ OUTPUT ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_BINARY_DIR}/bin/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE}
+ COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
+ DEPENDS ${spv_file} xxd
+ COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/xxd"
+ )
+ endif()
+ endforeach()
+ endfunction()
+
+ if (EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/kompute/CMakeLists.txt")
+ message(STATUS "Kompute found")
+ set(KOMPUTE_OPT_LOG_LEVEL Error CACHE STRING "Kompute log level")
+ add_subdirectory(kompute)
+
+ # Compile our shaders
+ compile_shader(SOURCES
+ kompute-shaders/op_scale.comp
+ kompute-shaders/op_scale_8.comp
+ kompute-shaders/op_add.comp
+ kompute-shaders/op_addrow.comp
+ kompute-shaders/op_mul.comp
+ kompute-shaders/op_silu.comp
+ kompute-shaders/op_relu.comp
+ kompute-shaders/op_gelu.comp
+ kompute-shaders/op_softmax.comp
+ kompute-shaders/op_norm.comp
+ kompute-shaders/op_rmsnorm.comp
+ kompute-shaders/op_diagmask.comp
+ kompute-shaders/op_mul_mat_mat_f32.comp
+ kompute-shaders/op_mul_mat_f16.comp
+ kompute-shaders/op_mul_mat_q8_0.comp
+ kompute-shaders/op_mul_mat_q4_0.comp
+ kompute-shaders/op_mul_mat_q4_1.comp
+ kompute-shaders/op_mul_mat_q6_k.comp
+ kompute-shaders/op_getrows_f16.comp
+ kompute-shaders/op_getrows_q4_0.comp
+ kompute-shaders/op_getrows_q4_1.comp
+ kompute-shaders/op_getrows_q6_k.comp
+ kompute-shaders/op_rope_f16.comp
+ kompute-shaders/op_rope_f32.comp
+ kompute-shaders/op_cpy_f16_f16.comp
+ kompute-shaders/op_cpy_f16_f32.comp
+ kompute-shaders/op_cpy_f32_f16.comp
+ kompute-shaders/op_cpy_f32_f32.comp
+ )
+
+ # Create a custom target for our generated shaders
+ add_custom_target(generated_shaders DEPENDS
+ shaderop_scale.h
+ shaderop_scale_8.h
+ shaderop_add.h
+ shaderop_addrow.h
+ shaderop_mul.h
+ shaderop_silu.h
+ shaderop_relu.h
+ shaderop_gelu.h
+ shaderop_softmax.h
+ shaderop_norm.h
+ shaderop_rmsnorm.h
+ shaderop_diagmask.h
+ shaderop_mul_mat_mat_f32.h
+ shaderop_mul_mat_f16.h
+ shaderop_mul_mat_q8_0.h
+ shaderop_mul_mat_q4_0.h
+ shaderop_mul_mat_q4_1.h
+ shaderop_mul_mat_q6_k.h
+ shaderop_getrows_f16.h
+ shaderop_getrows_q4_0.h
+ shaderop_getrows_q4_1.h
+ shaderop_getrows_q6_k.h
+ shaderop_rope_f16.h
+ shaderop_rope_f32.h
+ shaderop_cpy_f16_f16.h
+ shaderop_cpy_f16_f32.h
+ shaderop_cpy_f32_f16.h
+ shaderop_cpy_f32_f32.h
+ )
+
+ # Create a custom command that depends on the generated_shaders
+ add_custom_command(
+ OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp
+ COMMAND ${CMAKE_COMMAND} -E touch ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp
+ DEPENDS generated_shaders
+ COMMENT "Ensuring shaders are generated before compiling ggml-kompute.cpp"
+ )
+
+ # Add the stamp to the main sources to ensure dependency tracking
+ set(GGML_SOURCES_KOMPUTE ggml-kompute.cpp ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp)
+ set(GGML_HEADERS_KOMPUTE ggml-kompute.h ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp)
+ add_compile_definitions(GGML_USE_KOMPUTE)
+ set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} kompute)
+ set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${CMAKE_BINARY_DIR})
+ else()
+ message(WARNING "Kompute not found")
+ endif()
+endif()
+
function(get_flags CCID CCVER)
set(C_FLAGS "")
set(CXX_FLAGS "")
@@ -852,13 +1006,14 @@ add_library(ggml OBJECT
ggml-backend.h
ggml-quants.c
ggml-quants.h
- ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
- ${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
- ${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN}
- ${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
- ${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
- ${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
- ${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
+ ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
+ ${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
+ ${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN}
+ ${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
+ ${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
+ ${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
+ ${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
+ ${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE}
)
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})
diff --git a/ggml-backend.c b/ggml-backend.c
index 8b6cf7c9..0764dfeb 100644
--- a/ggml-backend.c
+++ b/ggml-backend.c
@@ -373,6 +373,11 @@ GGML_CALL static void ggml_backend_registry_init(void) {
extern GGML_CALL int ggml_backend_vk_reg_devices(void);
ggml_backend_vk_reg_devices();
#endif
+
+#ifdef GGML_USE_KOMPUTE
+ extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
+ ggml_backend_kompute_reg_devices();
+#endif
}
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
diff --git a/ggml-kompute.cpp b/ggml-kompute.cpp
new file mode 100644
index 00000000..51c5af8e
--- /dev/null
+++ b/ggml-kompute.cpp
@@ -0,0 +1,1990 @@
+#include "ggml.h"
+#include "ggml-backend.h"
+#include "ggml-backend-impl.h"
+#include "ggml-kompute.h"
+
+// These are generated at build time by cmake custom command
+#include "shaderop_scale.h"
+#include "shaderop_scale_8.h"
+#include "shaderop_add.h"
+#include "shaderop_addrow.h"
+#include "shaderop_mul.h"
+#include "shaderop_silu.h"
+#include "shaderop_relu.h"
+#include "shaderop_gelu.h"
+#include "shaderop_softmax.h"
+#include "shaderop_norm.h"
+#include "shaderop_rmsnorm.h"
+#include "shaderop_diagmask.h"
+#include "shaderop_mul_mat_f16.h"
+#include "shaderop_mul_mat_q8_0.h"
+#include "shaderop_mul_mat_q4_0.h"
+#include "shaderop_mul_mat_q4_1.h"
+#include "shaderop_mul_mat_q6_k.h"
+#include "shaderop_mul_mat_mat_f32.h"
+#include "shaderop_getrows_f16.h"
+#include "shaderop_getrows_q4_0.h"
+#include "shaderop_getrows_q4_1.h"
+#include "shaderop_getrows_q6_k.h"
+#include "shaderop_rope_f16.h"
+#include "shaderop_rope_f32.h"
+#include "shaderop_cpy_f16_f16.h"
+#include "shaderop_cpy_f16_f32.h"
+#include "shaderop_cpy_f32_f16.h"
+#include "shaderop_cpy_f32_f32.h"
+
+#include <algorithm>
+#include <array>
+#include <cassert>
+#include <cstdint>
+#include <cstdio>
+#include <cstring>
+#include <iostream>
+#include <memory>
+#include <stdexcept>
+#include <string>
+#include <unordered_map>
+#include <utility>
+#include <vector>
+
+#include <kompute/Kompute.hpp>
+#include <vulkan/vulkan.hpp>
+
+#ifdef __linux__
+#include <cstdlib> // for setenv
+#endif
+
+#define QK4_0 32
+#define QR4_0 2
+#define QK4_1 32
+#define QK_NL 16
+
+typedef ggml_fp16_t half;
+
+static std::string ggml_kompute_format_name(int device) {
+ return "Kompute" + std::to_string(device);
+}
+
+struct ggml_kompute_context {
+ int device;
+ std::string name;
+ std::shared_ptr<vk::DescriptorPool> pool;
+
+ ggml_kompute_context(int device)
+ : device(device), name(ggml_kompute_format_name(device)) {}
+};
+
+// FIXME: It would be good to consolidate the kompute manager and the kompute context into one object
+// and consolidate the init functions and simplify object lifetime management. As it currently stands,
+// we *have* to have the kompute manager no matter what for device discovery, but the kompute context
+// is only created when a device is set and vulkan is explicitly turned on.
+static ggml_kompute_context *s_kompute_context = nullptr;
+
+class kompute_manager {
+ kp::Manager *s_mgr = nullptr;
+
+public:
+ kp::Manager *operator()() {
+ if (s_mgr && !s_mgr->hasInstance()) {
+ destroy();
+ }
+ if (!s_mgr) {
+ s_mgr = new kp::Manager;
+ }
+ return s_mgr;
+ }
+
+ void destroy() {
+ delete s_mgr;
+ s_mgr = nullptr;
+ }
+};
+
+static kompute_manager komputeManager;
+
+struct ggml_vk_memory {
+ void *data = nullptr;
+ size_t size = 0;
+ vk::DeviceMemory *primaryMemory = nullptr;
+ vk::Buffer *primaryBuffer = nullptr;
+ vk::DeviceMemory *stagingMemory = nullptr;
+ vk::Buffer *stagingBuffer = nullptr;
+};
+
+#ifdef __linux__
+__attribute__((constructor))
+static void enable_sam() {
+ setenv("RADV_PERFTEST", "sam", false);
+}
+#endif
+
+static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) {
+ vk::PhysicalDeviceFeatures availableFeatures;
+ physical_device.getFeatures(&availableFeatures);
+
+ if (!availableFeatures.shaderInt16)
+ return false;
+
+ vk::PhysicalDeviceVulkan11Features availableFeatures11;
+ vk::PhysicalDeviceVulkan12Features availableFeatures12;
+
+ availableFeatures11.pNext = &availableFeatures12;
+ availableFeatures12.pNext = nullptr;
+
+ vk::PhysicalDeviceFeatures2 features2;
+ features2.pNext = &availableFeatures11;
+
+ physical_device.getFeatures2(&features2);
+
+ if (!availableFeatures11.uniformAndStorageBuffer16BitAccess ||
+ !availableFeatures11.storageBuffer16BitAccess) {
+ return false;
+ }
+
+ if (!availableFeatures12.storageBuffer8BitAccess ||
+ !availableFeatures12.uniformAndStorageBuffer8BitAccess ||
+ !availableFeatures12.shaderFloat16 ||
+ !availableFeatures12.shaderInt8) {
+ return false;
+ }
+
+ return true;
+}
+
+static const char * ggml_vk_getVendorName(uint32_t vendorID) {
+ switch (vendorID) {
+ case 0x10DE:
+ return "nvidia";
+ case 0x1002:
+ return "amd";
+ case 0x8086:
+ return "intel";
+ default:
+ return "unknown";
+ }
+}
+
+static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) {
+ std::vector<ggml_vk_device> results;
+ if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance())
+ return results;
+
+ std::vector<vk::PhysicalDevice> physical_devices;
+ try {
+ physical_devices = komputeManager()->listDevices();
+ } catch (vk::SystemError & err) {
+ std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n";
+ return results;
+ }
+
+ uint32_t deviceCount = physical_devices.size();
+ if (deviceCount == 0)
+ return results;
+
+ std::unordered_map<std::string, size_t> count_by_name;
+
+ for (uint32_t i = 0; i < deviceCount; i++) {
+ const auto & physical_device = physical_devices[i];
+
+ VkPhysicalDeviceProperties dev_props = physical_device.getProperties();
+ VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties();
+ const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion);
+ const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion);
+ if (major < 1 || minor < 2)
+ continue;
+
+ if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device))
+ continue;
+
+ size_t heapSize = 0;
+ for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) {
+ VkMemoryHeap heap = memoryProperties.memoryHeaps[j];
+ if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) {
+ heapSize = heap.size;
+ break;
+ }
+ }
+
+ if (heapSize < memoryRequired)
+ continue;
+
+ auto ext_props = physical_device.enumerateDeviceExtensionProperties();
+ bool has_maintenance4 = false;
+
+ // Check if maintenance4 is supported
+ for (const auto & properties : ext_props) {
+ if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
+ has_maintenance4 = true;
+ }
+ }
+
+ vk::PhysicalDeviceSubgroupProperties subgroup_props;
+ vk::PhysicalDeviceProperties2 dev_props2;
+ vk::PhysicalDeviceMaintenance3Properties dev_props3;
+ vk::PhysicalDeviceMaintenance4Properties dev_props4;
+ dev_props2.pNext = &dev_props3;
+ dev_props3.pNext = &subgroup_props;
+ if (has_maintenance4) {
+ subgroup_props.pNext = &dev_props4;
+ }
+ physical_device.getProperties2(&dev_props2);
+
+ if (subgroup_props.subgroupSize < 32)
+ continue;
+
+ ggml_vk_device d;
+ d.index = i;
+ d.type = dev_props.deviceType;
+ d.heapSize = heapSize;
+ d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID));
+ d.subgroupSize = subgroup_props.subgroupSize;
+ d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment;
+
+ if (has_maintenance4) {
+ d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize);
+ } else {
+ d.maxAlloc = dev_props3.maxMemoryAllocationSize;
+ }
+
+ std::string name(dev_props.deviceName);
+ size_t n_idx = ++count_by_name[name];
+ if (n_idx > 1) {
+ name += " (" + std::to_string(n_idx) + ")";
+ }
+ d.name = strdup(name.c_str());
+
+ results.push_back(d);
+ }
+
+ std::stable_sort(results.begin(), results.end(),
+ [](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool {
+ if (lhs.type != rhs.type) {
+ if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true;
+ if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false;
+
+ if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true;
+ if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false;
+ }
+ return lhs.heapSize < rhs.heapSize;
+ }
+ );
+
+ return results;
+}
+
+// public API returns a C-style array
+ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) {
+ auto devices = ggml_vk_available_devices_internal(memoryRequired);
+ *count = devices.size();
+ if (devices.empty()) {
+ return nullptr;
+ }
+
+ size_t nbytes = sizeof (ggml_vk_device) * (devices.size());
+ auto * arr = static_cast<ggml_vk_device *>(malloc(nbytes));
+ memcpy(arr, devices.data(), nbytes);
+ return arr;
+}
+
+static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) {
+ devices.erase(
+ std::remove_if(devices.begin(), devices.end(),
+ [&targetVendor](const ggml_vk_device& device) {
+ return device.vendor != targetVendor;
+ }),
+ devices.end()
+ );
+}
+
+static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) {
+ devices.erase(
+ std::remove_if(devices.begin(), devices.end(),
+ [&targetName](const ggml_vk_device& device) {
+ return device.name != targetName;
+ }),
+ devices.end()
+ );
+}
+
+static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) {
+ if (name.empty())
+ return false;
+
+ auto devices = ggml_vk_available_devices_internal(memoryRequired);
+ if (name == "amd" || name == "nvidia" || name == "intel") {
+ ggml_vk_filterByVendor(devices, name);
+ } else if (name != "gpu") {
+ ggml_vk_filterByName(devices, name);
+ }
+
+ if (devices.empty())
+ return false;
+
+ *device = devices.front();
+ return true;
+}
+
+bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) {
+ return ggml_vk_get_device(device, memoryRequired, std::string(name));
+}
+
+bool ggml_vk_has_vulkan() {
+ return komputeManager()->hasVulkan();
+}
+
+bool ggml_vk_has_device() {
+ return komputeManager()->hasDevice();
+}
+
+ggml_vk_device ggml_vk_current_device() {
+ if (!komputeManager()->hasDevice())
+ return ggml_vk_device();
+
+ auto devices = ggml_vk_available_devices_internal(0);
+ ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data());
+ GGML_ASSERT(!devices.empty());
+ return devices.front();
+}
+
+static
+void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) {
+ std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = {
+ vk::DescriptorPoolSize(
+ vk::DescriptorType::eStorageBuffer,
+ 3 * size // Descriptor count is number of possible tensors to pass into an algorithm
+ )
+ };
+
+ vk::DescriptorPoolCreateInfo descriptorPoolInfo(
+ vk::DescriptorPoolCreateFlags(),
+ size, // Max sets
+ static_cast<uint32_t>(descriptorPoolSizes.size()),
+ descriptorPoolSizes.data());
+
+ ctx->pool = std::make_shared<vk::DescriptorPool>();
+ vk::Result r = komputeManager()->device()->createDescriptorPool(
+ &descriptorPoolInfo, nullptr, ctx->pool.get());
+ if (r != vk::Result::eSuccess)
+ std::cerr << "Error allocating descriptor pool" << vk::to_string(r);
+}
+
+static
+void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) {
+ if (ctx->pool) {
+ komputeManager()->device()->destroy(
+ *ctx->pool,
+ (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+ ctx->pool = nullptr;
+ }
+}
+
+static
+vk::Buffer *ggml_vk_allocate_buffer(size_t size) {
+ vk::BufferCreateInfo bufferCreateInfo;
+ bufferCreateInfo.size = size;
+ bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer |
+ vk::BufferUsageFlagBits::eTransferSrc |
+ vk::BufferUsageFlagBits::eTransferDst;
+ bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
+
+ vk::Buffer *vkBuffer = new vk::Buffer;
+ vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer);
+ if (r != vk::Result::eSuccess)
+ std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl;
+ return vkBuffer;
+}
+
+static
+vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) {
+
+ uint32_t memoryTypeIndex = -1;
+ bool memoryTypeIndexFound = false;
+ vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties();
+ for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) {
+ const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i];
+ const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex];
+ if (memoryHeap.size < size) {
+ continue;
+ }
+
+ if (requirements.memoryTypeBits & (1 << i)) {
+ if (((memoryProperties.memoryTypes[i]).propertyFlags &
+ flags) == flags) {
+ memoryTypeIndex = i;
+ memoryTypeIndexFound = true;
+ if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
+ *isHostVisible = true;
+ }
+ break;
+ }
+ }
+ }
+ if (!memoryTypeIndexFound) {
+ throw std::runtime_error(
+ "Memory type index for buffer creation not found");
+ }
+
+ vk::MemoryAllocateInfo allocInfo;
+ allocInfo.allocationSize = size;
+ allocInfo.memoryTypeIndex = memoryTypeIndex;
+ vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory;
+ vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory);
+ if (r != vk::Result::eSuccess) {
+ std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl;
+ throw std::runtime_error("Error allocating vulkan memory.");
+ }
+ return vkDeviceMemory;
+}
+
+static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) {
+ size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer);
+
+ // If offset is already aligned, return it directly
+ if (offset % minStorageBufferOffsetAlignment == 0) {
+ return offset;
+ }
+
+ // Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset
+ return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment;
+}
+
+static ggml_vk_memory ggml_vk_allocate(size_t size) {
+ ggml_vk_memory memory;
+ bool isHostVisible = false;
+ {
+ memory.primaryBuffer = ggml_vk_allocate_buffer(size);
+ vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer);
+ vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal;
+ memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
+ komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0);
+ if (isHostVisible) {
+ vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
+ if (r != vk::Result::eSuccess)
+ std::cerr << "Error mapping memory" << vk::to_string(r);
+ }
+ }
+
+ if (!isHostVisible) {
+ memory.stagingBuffer = ggml_vk_allocate_buffer(size);
+ vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer);
+ vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible |
+ vk::MemoryPropertyFlagBits::eHostCoherent |
+ vk::MemoryPropertyFlagBits::eHostCached;
+ memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
+ komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0);
+ vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
+ if (r != vk::Result::eSuccess)
+ std::cerr << "Error mapping memory" << vk::to_string(r);
+ }
+
+ memory.size = size;
+ return memory;
+}
+
+static void ggml_vk_free_memory(ggml_vk_memory &memory)
+{
+ komputeManager()->device()->destroy(
+ *memory.primaryBuffer,
+ (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+ if (memory.stagingBuffer) {
+ komputeManager()->device()->destroy(
+ *memory.stagingBuffer,
+ (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+ }
+ komputeManager()->device()->freeMemory(
+ *memory.primaryMemory,
+ (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+ if (memory.stagingMemory) {
+ komputeManager()->device()->freeMemory(
+ *memory.stagingMemory,
+ (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+ }
+}
+
+static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft);
+
+static
+ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) {
+ ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
+
+ // compatibility with ggml-backend
+ GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name);
+
+ ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context);
+
+ const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data);
+
+ GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size));
+
+ offset = uint64_t(ioffs);
+ return buf_ctx;
+}
+
+static
+const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) {
+ uint64_t originalOffset = 0;
+ auto * res = ggml_vk_find_tensor(t, originalOffset);
+ if (!res) {
+ static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
+ return nullTensor;
+ }
+
+ // Create a tensor whose memory will be composed of our buffers at the correct offset
+ const size_t nelements = ggml_nelements(t);
+ size_t nbytes = ggml_nbytes(t);
+
+ size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset);
+ if (alignedOffset) {
+ *alignedOffset = originalOffset - vulkanOffset;
+ nbytes += *alignedOffset;
+ }
+
+ return komputeManager()->tensor(
+ t->data,
+ nelements,
+ nbytes, kp::Tensor::TensorDataTypes::eFloat,
+ res->primaryMemory, res->primaryBuffer,
+ res->stagingMemory, res->stagingBuffer,
+ vulkanOffset);
+}
+
+static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) {
+ if (size % sizeof(uint32_t) != 0) {
+ throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)");
+ }
+
+ const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData);
+ size_t count = size / sizeof(uint32_t);
+ return std::vector<uint32_t>(data_ptr, data_ptr + count);
+}
+
+inline static
+uint32_t safe_divide(uint32_t a, uint32_t b) {
+ if (b <= 1) {
+ return a;
+ }
+ if ((a % b) != 0) {
+ fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b);
+ GGML_ASSERT(!"safe_divide result would've had remainder");
+ }
+ return a / b;
+}
+
+static void ggml_vk_add(
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
+ int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
+ int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
+ int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
+ int32_t ne0,
+ int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
+) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv,
+ kp::shader_data::op_add_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00;
+ int32_t nb00, nb01, nb02, nb03;
+ int32_t ne10, ne11, ne12, ne13;
+ int32_t nb10, nb11, nb12, nb13;
+ int32_t ne0;
+ int32_t nb0, nb1, nb2, nb3;
+ } const pushConsts {
+ safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00,
+ nb00, nb01, nb02, nb03,
+ ne10, ne11, ne12, ne13,
+ nb10, nb11, nb12, nb13,
+ ne0,
+ nb0, nb1, nb2, nb3
+ };
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__)) {
+ s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_addrow(kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ uint32_t size, uint32_t row = 0) {
+
+ const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv,
+ kp::shader_data::op_addrow_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ uint32_t row;
+ } const pushConsts {
+ safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ row
+ };
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__))
+ s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
+ else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({size});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_mul(
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
+ int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
+ int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
+ int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
+ int32_t ne0,
+ int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
+) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv,
+ kp::shader_data::op_mul_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00;
+ int32_t nb00, nb01, nb02, nb03;
+ int32_t ne10, ne11, ne12, ne13;
+ int32_t nb10, nb11, nb12, nb13;
+ int32_t ne0;
+ int32_t nb0, nb1, nb2, nb3;
+ } const pushConsts {
+ safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00,
+ nb00, nb01, nb02, nb03,
+ ne10, ne11, ne12, ne13,
+ nb10, nb11, nb12, nb13,
+ ne0,
+ nb0, nb1, nb2, nb3
+ };
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__)) {
+ s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_scale(kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& in,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inOff, uint32_t outOff,
+ uint32_t size, float scale) {
+ const static auto spirv_1 = getSpirvShader(
+ kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len
+ );
+ const static auto spirv_8 = getSpirvShader(
+ kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len
+ );
+
+ struct PushConstants {
+ uint32_t inOff, outOff;
+ float scale;
+ } const pushConsts {
+ safe_divide(inOff, 4), safe_divide(outOff, 4),
+ scale
+ };
+
+ const auto * spirv = &spirv_1;
+ std::string name(__func__);
+ if (size % 8 == 0) {
+ size /= 8;
+ name += "_8";
+ spirv = &spirv_8;
+ }
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(name)) {
+ s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(name);
+ s_algo->setTensors({in, out});
+ s_algo->setWorkgroup({size});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_xxlu(
+ const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& in,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inOff, uint32_t outOff,
+ uint32_t size
+) {
+ struct PushConstants {
+ uint32_t inOff, outOff;
+ } const pushConsts {
+ safe_divide(inOff, 4), safe_divide(outOff, 4),
+ };
+
+ auto name = std::string(__func__) + "_" + suffix;
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(name)) {
+ s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(name);
+ s_algo->setTensors({in, out});
+ s_algo->setWorkgroup({size});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_silu(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv,
+ kp::shader_data::op_silu_comp_spv_len);
+
+ ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_relu(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv,
+ kp::shader_data::op_relu_comp_spv_len);
+
+ ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_gelu(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv,
+ kp::shader_data::op_gelu_comp_spv_len);
+
+ ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...);
+}
+
+static void ggml_vk_soft_max(
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03,
+ float scale
+) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv,
+ kp::shader_data::op_softmax_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00, ne01, ne02;
+ float scale;
+ int32_t mask;
+ } pushConsts {
+ safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00, ne01, ne02,
+ scale,
+ bool(inB)
+ };
+
+ auto & inB_ = inB ? inB : inA;
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__)) {
+ // FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device
+ const uint32_t local_x = 32;
+ s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({inA, inB_, out});
+ s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_norm_(
+ const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& in,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inOff, uint32_t outOff,
+ int32_t ne00, int32_t nb01,
+ int32_t nrows, float epsilon
+) {
+ GGML_ASSERT(nb01%sizeof(float) == 0);
+ GGML_ASSERT(ne00%sizeof(float) == 0);
+
+ struct PushConstants {
+ uint32_t inOff, outOff;
+ uint32_t ne00, nb01;
+ float eps;
+ } pushConsts {
+ safe_divide(inOff, 4), safe_divide(outOff, 4),
+ (uint32_t)ne00, (uint32_t)nb01, epsilon
+ };
+
+ auto name = std::string(__func__) + "_" + suffix;
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(name)) {
+ s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(name);
+ s_algo->setTensors({in, out});
+ s_algo->setWorkgroup({(uint32_t)nrows});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_norm(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv,
+ kp::shader_data::op_norm_comp_spv_len);
+
+ ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_rms_norm(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv,
+ kp::shader_data::op_rmsnorm_comp_spv_len);
+
+ ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...);
+}
+
+static void ggml_vk_diag_mask_inf(kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& in,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inOff, uint32_t outOff,
+ uint32_t n_past,
+ int32_t ne00, int32_t ne01, int32_t ne02) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv,
+ kp::shader_data::op_diagmask_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inOff, outOff;
+ uint32_t n_past;
+ int32_t ne00, ne01;
+ } pushConsts {
+ safe_divide(inOff, 4), safe_divide(outOff, 4),
+ n_past,
+ ne00, ne01
+ };
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__))
+ s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts});
+ else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({in, out});
+ s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_mul_mat_f16(
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t ne01, int32_t ne02,
+ uint32_t nb00, uint32_t nb01, uint32_t nb02,
+ int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
+ uint32_t nb10, uint32_t nb11, uint32_t nb12,
+ int32_t ne0, int32_t ne1,
+ uint32_t r2, uint32_t r3
+) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv,
+ kp::shader_data::op_mul_mat_f16_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00, ne01, ne02;
+ uint32_t nb00, nb01, nb02;
+ int32_t ne10, ne11, ne12;
+ uint32_t nb10, nb11, nb12;
+ int32_t ne0, ne1;
+ uint32_t r2, r3;
+ } pushConsts {
+ safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00, ne01, ne02,
+ nb00, nb01, nb02,
+ ne10, ne11, ne12,
+ nb10, nb11, nb12,
+ ne0, ne1,
+ r2, r3
+ };
+
+ const unsigned ny = unsigned((ne11 + 4 - 1)/4);
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__)) {
+ const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
+ s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t ne01, int32_t ne02,
+ uint32_t nb01, uint32_t nb02,
+ int32_t ne11, int32_t ne12,
+ uint32_t nb11, uint32_t nb12,
+ uint32_t nb1, uint32_t nb2) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv,
+ kp::shader_data::op_mul_mat_mat_f32_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00, ne01, ne02, ne11, ne12;
+ uint32_t nb01, nb02;
+ uint32_t nb11, nb12;
+ uint32_t nb1, nb2;
+ } pushConsts {
+ safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00, ne01, ne02, ne11, ne12,
+ nb01, nb02, nb11, nb12,
+ nb1, nb2
+ };
+
+ const uint32_t local_x = ggml_vk_current_device().subgroupSize;
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__)) {
+ s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(),
+ {inA, inB, out}, spirv,
+ {unsigned(ne01),
+ unsigned(ne11),
+ unsigned(std::max(ne12, ne02))
+ },
+ {local_x},
+ {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({unsigned(ne01),
+ unsigned(ne11),
+ unsigned(std::max(ne12, ne02)),
+ });
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_mul_mat_impl(
+ const std::vector<uint32_t>& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t ne01, int32_t ne02,
+ int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
+ int32_t ne0, int32_t ne1,
+ uint32_t r2, uint32_t r3
+) {
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00, ne01, ne02;
+ int32_t ne10, ne12;
+ int32_t ne0, ne1;
+ uint32_t r2, r3;
+ } pushConsts {
+ safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00, ne01, ne02,
+ ne10, ne12,
+ ne0, ne1,
+ r2, r3
+ };
+
+ auto name = std::string(__func__) + "_" + suffix;
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(name)) {
+ const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
+ s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(name);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_mul_mat_q4_0(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv,
+ kp::shader_data::op_mul_mat_q4_0_comp_spv_len);
+
+ ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_mul_mat_q4_1(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv,
+ kp::shader_data::op_mul_mat_q4_1_comp_spv_len);
+
+ ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_mul_mat_q8_0(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv,
+ kp::shader_data::op_mul_mat_q8_0_comp_spv_len);
+
+ ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
+}
+
+static void ggml_vk_mul_mat_q6_k(
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne1,
+ int32_t ne01, int32_t ne11, int32_t ne12, int32_t ne02
+) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv,
+ kp::shader_data::op_mul_mat_q6_k_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00, ne10, ne0, ne1, ne01, gqa;
+ } pushConsts {
+ inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00, ne10, ne0, ne1, ne01, ne12/ne02
+ };
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__)) {
+ const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
+ s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}, {local_x}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_get_rows(
+ const std::vector<uint32_t>& spirv,
+ const char * suffix,
+ unsigned element_size, unsigned qk,
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t nb01, int32_t nb1,
+ uint32_t size
+) {
+ GGML_ASSERT(nb01%element_size == 0);
+ GGML_ASSERT(nb1%sizeof(float) == 0);
+ if (qk) GGML_ASSERT(ne00%qk == 0);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00, nb01, nb1;
+ } pushConsts {
+ safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00, nb01, nb1
+ };
+
+ auto name = std::string(__func__) + "_" + suffix;
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(name)) {
+ s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(name);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({size});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_get_rows_f16(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv,
+ kp::shader_data::op_getrows_f16_comp_spv_len);
+
+ ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_get_rows_q4_0(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv,
+ kp::shader_data::op_getrows_q4_0_comp_spv_len);
+
+ ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_get_rows_q4_1(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv,
+ kp::shader_data::op_getrows_q4_1_comp_spv_len);
+
+ ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_get_rows_q6_k(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv,
+ kp::shader_data::op_getrows_q6_k_comp_spv_len);
+ ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward<Args>(args)...);
+}
+
+static void ggml_vk_rope(
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_orig_ctx,
+ float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow,
+ int32_t ne01, int32_t ne02, int32_t ne03,
+ uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
+ int32_t ne0,
+ uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
+) {
+ GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32);
+
+ static const auto spirv_f16 = getSpirvShader(
+ kp::shader_data::op_rope_f16_comp_spv, kp::shader_data::op_rope_f16_comp_spv_len
+ );
+ static const auto spirv_f32 = getSpirvShader(
+ kp::shader_data::op_rope_f32_comp_spv, kp::shader_data::op_rope_f32_comp_spv_len
+ );
+
+ int type_size = src0t == GGML_TYPE_F16 ? 2 : 4;
+
+ GGML_ASSERT(nb03 % type_size == 0);
+ GGML_ASSERT(nb02 % type_size == 0);
+ GGML_ASSERT(nb01 % type_size == 0);
+ GGML_ASSERT(nb00 % type_size == 0);
+ GGML_ASSERT(nb3 % type_size == 0);
+ GGML_ASSERT(nb2 % type_size == 0);
+ GGML_ASSERT(nb1 % type_size == 0);
+ GGML_ASSERT(nb0 % type_size == 0);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t n_dims, mode, n_orig_ctx;
+ float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+ uint32_t nb00, nb01, nb02, nb03;
+ int32_t ne0;
+ uint32_t nb0, nb1, nb2, nb3;
+ } pushConsts {
+ safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size),
+ n_dims, mode, n_orig_ctx,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
+ nb00, nb01, nb02, nb03,
+ ne0,
+ nb0, nb1, nb2, nb3
+ };
+
+ auto name = std::string(__func__) + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32");
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(name)) {
+ s_algo = komputeManager()->algorithm<float, PushConstants>(
+ name, s_kompute_context->pool.get(), {inA, inB, out},
+ src0t == GGML_TYPE_F16 ? spirv_f16 : spirv_f32,
+ {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}
+ );
+ } else {
+ s_algo = komputeManager()->getAlgorithm(name);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_cpy(
+ const std::vector<uint32_t>& spirv,
+ uint32_t in_element_size, uint32_t out_element_size,
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& in,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inOff, uint32_t outOff,
+ int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
+ uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
+ int32_t ne0, int32_t ne1, int32_t ne2,
+ uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
+) {
+ struct PushConstants {
+ uint32_t inOff, outOff;
+ int32_t ne00, ne01, ne02;
+ uint32_t nb00, nb01, nb02, nb03;
+ int32_t ne0, ne1, ne2;
+ uint32_t nb0, nb1, nb2, nb3;
+ } pushConsts {
+ safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size),
+ ne00, ne01, ne02,
+ nb00, nb01, nb02, nb03,
+ ne0, ne1, ne2,
+ nb0, nb1, nb2, nb3
+ };
+
+ std::string name = std::string(__func__)
+ + "_i_" + std::to_string(in_element_size)
+ + "_o_" + std::to_string(out_element_size);
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(name))
+ s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
+ else {
+ s_algo = komputeManager()->getAlgorithm(name);
+ s_algo->setTensors({in, out});
+ s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_cpy_f32_f16(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv,
+ kp::shader_data::op_cpy_f32_f16_comp_spv_len);
+ ggml_vk_cpy(spirv, 4, 2, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_cpy_f32_f32(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv,
+ kp::shader_data::op_cpy_f32_f32_comp_spv_len);
+ ggml_vk_cpy(spirv, 4, 4, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_cpy_f16_f16(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv,
+ kp::shader_data::op_cpy_f16_f16_comp_spv_len);
+ ggml_vk_cpy(spirv, 2, 2, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_cpy_f16_f32(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv,
+ kp::shader_data::op_cpy_f16_f32_comp_spv_len);
+ ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...);
+}
+
+static bool ggml_vk_supports_op(const struct ggml_tensor * op) {
+ switch (op->type) {
+ case GGML_TYPE_F16:
+ case GGML_TYPE_F32:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ break;
+ default:
+ return false;
+ }
+
+ switch (op->op) {
+ case GGML_OP_UNARY:
+ switch (ggml_get_unary_op(op)) {
+ case GGML_UNARY_OP_RELU:
+ case GGML_UNARY_OP_GELU:
+ case GGML_UNARY_OP_SILU:
+ return true;
+ default:
+ ;
+ }
+ break;
+ case GGML_OP_NONE:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_VIEW:
+ case GGML_OP_TRANSPOSE:
+ case GGML_OP_PERMUTE:
+ case GGML_OP_ADD:
+ case GGML_OP_MUL:
+ case GGML_OP_SCALE:
+ case GGML_OP_SOFT_MAX:
+ case GGML_OP_RMS_NORM:
+ case GGML_OP_NORM:
+ case GGML_OP_ROPE:
+ return true;
+ case GGML_OP_DUP:
+ case GGML_OP_CPY:
+ case GGML_OP_CONT:
+ switch (op->src[0]->type) {
+ case GGML_TYPE_F32:
+ case GGML_TYPE_F16:
+ break;
+ default:
+ return false;
+ }
+ switch (op->type) {
+ case GGML_TYPE_F32:
+ case GGML_TYPE_F16:
+ break;
+ default:
+ return false;
+ }
+ return true;
+ case GGML_OP_DIAG_MASK_INF:
+ return op->ne[3] == 1;
+ case GGML_OP_GET_ROWS:
+ switch (op->src[0]->type) {
+ case GGML_TYPE_F16:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q6_K:
+ return op->ne[2] == 1 && op->ne[3] == 1;
+ default:
+ ;
+ }
+ return false;
+ case GGML_OP_MUL_MAT:
+ if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1]))
+ return false;
+
+ switch (op->src[0]->type) {
+ case GGML_TYPE_F32:
+ case GGML_TYPE_Q6_K:
+ return op->ne[3] == 1;
+ case GGML_TYPE_F16:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ return true;
+ default:
+ ;
+ }
+ default:
+ ;
+ }
+ return false;
+}
+
+static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) {
+ const int n_seq = 8;
+
+ // FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting
+ // it to the size of the graph, but I think it can be made smaller?
+ ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes);
+
+ std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq);
+
+ for (auto& sequence : sequences) {
+ sequence = komputeManager()->sequence();
+ }
+ for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) {
+ const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq;
+
+ auto& seq = *sequences[seq_idx];
+
+ const int node_start = (seq_idx + 0) * n_nodes_per_seq;
+ const int node_end = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes);
+
+ bool any_commands_recorded = false;
+
+ for (int i = node_start; i < node_end; ++i) {
+ struct ggml_tensor * src0 = gf->nodes[i]->src[0];
+ struct ggml_tensor * src1 = gf->nodes[i]->src[1];
+ struct ggml_tensor * dst = gf->nodes[i];
+ GGML_ASSERT(dst->data != nullptr);
+
+ switch (dst->op) {
+ case GGML_OP_NONE:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_VIEW:
+ case GGML_OP_TRANSPOSE:
+ case GGML_OP_PERMUTE:
+ continue; // noop -> next node
+ default:
+ break;
+ }
+
+ any_commands_recorded = true;
+
+ if (!ggml_vk_supports_op(dst)) {
+ fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
+ GGML_ASSERT(!"unsupported op");
+ }
+
+ const int32_t ne00 = src0 ? src0->ne[0] : 0;
+ const int32_t ne01 = src0 ? src0->ne[1] : 0;
+ const int32_t ne02 = src0 ? src0->ne[2] : 0;
+ const int32_t ne03 = src0 ? src0->ne[3] : 0;
+
+ const uint32_t nb00 = src0 ? src0->nb[0] : 0;
+ const uint32_t nb01 = src0 ? src0->nb[1] : 0;
+ const uint32_t nb02 = src0 ? src0->nb[2] : 0;
+ const uint32_t nb03 = src0 ? src0->nb[3] : 0;
+
+ const int32_t ne10 = src1 ? src1->ne[0] : 0;
+ const int32_t ne11 = src1 ? src1->ne[1] : 0;
+ const int32_t ne12 = src1 ? src1->ne[2] : 0;
+ const int32_t ne13 = src1 ? src1->ne[3] : 0;
+
+ const uint32_t nb10 = src1 ? src1->nb[0] : 0;
+ const uint32_t nb11 = src1 ? src1->nb[1] : 0;
+ const uint32_t nb12 = src1 ? src1->nb[2] : 0;
+ const uint32_t nb13 = src1 ? src1->nb[3] : 0;
+
+ const int32_t ne0 = dst ? dst->ne[0] : 0;
+ const int32_t ne1 = dst ? dst->ne[1] : 0;
+ const int32_t ne2 = dst ? dst->ne[2] : 0;
+// const int32_t ne3 = dst ? dst->ne[3] : 0;
+
+ const uint32_t nb0 = dst ? dst->nb[0] : 0;
+ const uint32_t nb1 = dst ? dst->nb[1] : 0;
+ const uint32_t nb2 = dst ? dst->nb[2] : 0;
+ const uint32_t nb3 = dst ? dst->nb[3] : 0;
+
+ const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
+ const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
+ const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
+
+ const static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
+ uint32_t off_src0 = 0;
+ uint32_t off_src1 = 0;
+ uint32_t off_dst = 0;
+ const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor;
+ const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor;
+ const std::shared_ptr<kp::Tensor>& id_dst = dst ? ggml_vk_get_tensor(dst, &off_dst) : nullTensor;
+
+ switch (dst->op) {
+ case GGML_OP_ADD:
+ {
+ if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
+ // src1 is a row
+ ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00);
+ } else {
+ ggml_vk_add(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne01, ne02, ne03,
+ nb00, nb01, nb02, nb03,
+ ne10, ne11, ne12, ne13,
+ nb10, nb11, nb12, nb13,
+ ne0,
+ nb0, nb1, nb2, nb3
+ );
+ }
+ } break;
+ case GGML_OP_MUL:
+ {
+ ggml_vk_mul(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne01, ne02, ne03,
+ nb00, nb01, nb02, nb03,
+ ne10, ne11, ne12, ne13,
+ nb10, nb11, nb12, nb13,
+ ne0,
+ nb0, nb1, nb2, nb3
+ );
+ } break;
+ case GGML_OP_SCALE:
+ {
+ float scale; memcpy(&scale, dst->op_params, sizeof(float));
+
+ ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale);
+ } break;
+ case GGML_OP_UNARY:
+ {
+ int64_t n = ggml_nelements(dst);
+ GGML_ASSERT(n % 4 == 0);
+ switch (ggml_get_unary_op(gf->nodes[i])) {
+ case GGML_UNARY_OP_SILU:
+ {
+ ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
+ } break;
+ case GGML_UNARY_OP_RELU:
+ {
+ ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
+ } break;
+ case GGML_UNARY_OP_GELU:
+ {
+ GGML_ASSERT(n % 8 == 0);
+ ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8);
+ } break;
+ default:
+ {
+ fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
+ GGML_ASSERT(false);
+ }
+ }
+ } break;
+ case GGML_OP_SOFT_MAX:
+ {
+ float scale;
+ memcpy(&scale, dst->op_params, sizeof(float));
+ ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale);
+ } break;
+ case GGML_OP_DIAG_MASK_INF:
+ {
+ const int n_past = ((int32_t *)(dst->op_params))[0];
+ ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02);
+ } break;
+ case GGML_OP_NORM:
+ {
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+ ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
+ } break;
+ case GGML_OP_RMS_NORM:
+ {
+ GGML_ASSERT(ne00 % 4 == 0);
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+ ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
+ } break;
+ case GGML_OP_MUL_MAT:
+ {
+ GGML_ASSERT(ne00 == ne10);
+
+ // TODO: assert that dim2 and dim3 are contiguous
+ GGML_ASSERT(ne12 % ne02 == 0);
+ GGML_ASSERT(ne13 % ne03 == 0);
+
+ const uint32_t r2 = ne12/ne02;
+ const uint32_t r3 = ne13/ne03;
+
+ if (src1t != GGML_TYPE_F32) {
+ fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
+ goto not_implemented;
+ }
+
+ if (ggml_is_transposed(src0) ||
+ ggml_is_transposed(src1)) {
+ fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
+ goto not_implemented;
+ }
+
+ switch (src0t) {
+ case GGML_TYPE_F32:
+ ggml_vk_mul_mat_mat_f32(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2
+ );
+ break;
+ case GGML_TYPE_F16:
+ ggml_vk_mul_mat_f16(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, ne13, nb10, nb11, nb12,
+ ne0, ne1, r2, r3
+ );
+ break;
+ case GGML_TYPE_Q8_0:
+ ggml_vk_mul_mat_q8_0(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
+ );
+ break;
+ case GGML_TYPE_Q4_0:
+ ggml_vk_mul_mat_q4_0(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
+ );
+ break;
+ case GGML_TYPE_Q4_1:
+ ggml_vk_mul_mat_q4_1(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
+ );
+ break;
+ case GGML_TYPE_Q6_K:
+ ggml_vk_mul_mat_q6_k(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne10, ne0, ne1, ne01, ne11, ne12, ne02
+ );
+ break;
+ default: {
+ fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
+ goto not_implemented;
+ }
+ }
+
+ } break;
+ case GGML_OP_GET_ROWS:
+ {
+ if (src0t == GGML_TYPE_F16) {
+ ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
+ } else if (src0t == GGML_TYPE_Q4_0) {
+ ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
+ } else if (src0t == GGML_TYPE_Q4_1) {
+ ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
+ } else if (src0t == GGML_TYPE_Q6_K) {
+ ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
+ } else {
+ fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t);
+ goto not_implemented;
+ }
+ } break;
+ case GGML_OP_ROPE:
+ {
+ GGML_ASSERT(ne10 == ne02);
+ GGML_ASSERT(src0t == dstt);
+ // const int n_past = ((int32_t *) dst->op_params)[0];
+ const int n_dims = ((int32_t *) dst->op_params)[1];
+ const int mode = ((int32_t *) dst->op_params)[2];
+ // skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan
+ const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
+
+ float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+ memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
+ memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
+ memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
+ memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
+ memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
+ memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
+ ggml_vk_rope(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_orig_ctx,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
+ ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3
+ );
+ } break;
+ case GGML_OP_DUP:
+ case GGML_OP_CPY:
+ case GGML_OP_CONT:
+ {
+ switch (src0t) {
+ case GGML_TYPE_F32:
+ {
+ switch (dstt) {
+ case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
+ case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
+ default: goto not_implemented;
+ }
+ } break;
+ case GGML_TYPE_F16:
+ {
+ switch (dstt) {
+ case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
+ case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
+ default: goto not_implemented;
+ } break;
+ default: goto not_implemented;
+ }
+ }
+ } break;
+ default: goto not_implemented;
+ }
+ continue;
+ not_implemented: {}
+ fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
+ //GGML_ASSERT(false);
+ }
+
+ // Evaluate sequence
+ if (any_commands_recorded) {
+ seq.evalAsync();
+ }
+ }
+
+ // Wait for all sequences to finish
+ for (auto& sequence : sequences) {
+ if (sequence->isRunning())
+ sequence->evalAwait();
+ }
+
+ ggml_vk_free_descriptor_pool(ctx);
+}
+
+template<>
+kp::Tensor::TensorDataTypes
+kp::TensorT<half>::dataType()
+{
+ return TensorDataTypes::eFloat;
+}
+
+template<>
+kp::Tensor::TensorDataTypes
+kp::TensorT<uint8_t>::dataType()
+{
+ return TensorDataTypes::eUnsignedInt;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+// backend interface
+
+struct ggml_backend_kompute_buffer_type_context {
+ int device;
+ int device_ref = 0;
+ uint64_t buffer_alignment;
+ uint64_t max_alloc;
+ std::string name;
+
+ ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc)
+ : device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {}
+};
+
+static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) {
+ auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+
+ if (!ctx->device_ref) {
+ komputeManager()->initializeDevice(
+ ctx->device, {}, {
+ "VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage",
+ "VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info"
+ }
+ );
+ }
+
+ assert(ggml_vk_has_device());
+ ctx->device_ref++;
+}
+
+static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) {
+ auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+
+ assert(ctx->device_ref > 0);
+
+ ctx->device_ref--;
+
+ if (!ctx->device_ref) {
+ komputeManager.destroy();
+ }
+}
+
+static const char * ggml_backend_kompute_buffer_get_name(ggml_backend_buffer_t buffer) {
+ auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buffer->buft->context);
+ return ctx->name.c_str();
+}
+
+static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ auto * memory = (ggml_vk_memory *)buffer->context;
+ if (ggml_vk_has_device()) {
+ ggml_vk_free_memory(*memory);
+ }
+ delete memory;
+}
+
+static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
+ return ((ggml_vk_memory *)buffer->context)->data;
+}
+
+static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ GGML_UNUSED(buffer);
+
+ const auto res = ggml_vk_get_tensor(tensor);
+ GGML_ASSERT(res);
+
+ memcpy((char *)tensor->data + offset, data, size);
+
+ komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res});
+}
+
+static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ GGML_UNUSED(buffer);
+
+ const auto res = ggml_vk_get_tensor(tensor);
+ GGML_ASSERT(res);
+
+ komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res});
+
+ memcpy(data, (const char *)tensor->data + offset, size);
+}
+
+static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ auto * memory = (ggml_vk_memory *)buffer->context;
+ memset(memory->data, value, buffer->size);
+
+ if (memory->stagingBuffer)
+ komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory->primaryBuffer, memory->stagingBuffer, memory->size);
+}
+
+static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = {
+ /* .get_name = */ ggml_backend_kompute_buffer_get_name,
+ /* .free_buffer = */ ggml_backend_kompute_buffer_free_buffer,
+ /* .get_base = */ ggml_backend_kompute_buffer_get_base,
+ /* .init_tensor = */ NULL,
+ /* .set_tensor = */ ggml_backend_kompute_buffer_set_tensor,
+ /* .get_tensor = */ ggml_backend_kompute_buffer_get_tensor,
+ /* .cpy_tensor = */ NULL,
+ /* .clear = */ ggml_backend_kompute_buffer_clear,
+ /* .reset = */ NULL,
+};
+
+// default buffer type
+
+static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
+ auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+ return ctx->name.c_str();
+}
+
+static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ ggml_backend_kompute_device_ref(buft);
+ auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size));
+ return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size);
+}
+
+static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+ auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+ return ctx->buffer_alignment;
+}
+
+static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
+ auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+ return ctx->max_alloc;
+}
+
+static bool ggml_backend_kompute_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
+ GGML_UNUSED(buft);
+ return ggml_backend_is_kompute(backend);
+}
+
+static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = {
+ /* .get_name = */ ggml_backend_kompute_buffer_type_get_name,
+ /* .alloc_buffer = */ ggml_backend_kompute_buffer_type_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_kompute_buffer_type_get_alignment,
+ /* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
+ /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
+ /* .supports_backend = */ ggml_backend_kompute_buffer_type_supports_backend,
+ /* .is_host = */ NULL,
+};
+
+ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) {
+ static std::vector<ggml_backend_buffer_type> bufts = []() {
+ std::vector<ggml_backend_buffer_type> vec;
+ auto devices = ggml_vk_available_devices_internal(0);
+ vec.reserve(devices.size());
+
+ for (const auto & dev : devices) {
+ vec.push_back({
+ /* .iface = */ ggml_backend_kompute_buffer_type_interface,
+ /* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc)
+ });
+ }
+ return vec;
+ }();
+
+ auto it = std::find_if(bufts.begin(), bufts.end(), [device](const ggml_backend_buffer_type & t) {
+ return device == static_cast<ggml_backend_kompute_buffer_type_context *>(t.context)->device;
+ });
+ return it < bufts.end() ? &*it : nullptr;
+}
+
+// backend
+
+static const char * ggml_backend_kompute_name(ggml_backend_t backend) {
+ auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
+ return ctx->name.c_str();
+}
+
+static void ggml_backend_kompute_free(ggml_backend_t backend) {
+ auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
+
+ assert(ctx == s_kompute_context);
+ s_kompute_context = nullptr;
+ if (ctx != nullptr) {
+ delete ctx;
+ }
+
+ delete backend;
+}
+
+static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(ggml_backend_t backend) {
+ auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
+ return ggml_backend_kompute_buffer_type(ctx->device);
+}
+
+static bool ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+ auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
+ ggml_vk_graph_compute(ctx, cgraph);
+ return true;
+}
+
+static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+ GGML_UNUSED(backend);
+ return ggml_vk_supports_op(op);
+}
+
+static struct ggml_backend_i kompute_backend_i = {
+ /* .get_name = */ ggml_backend_kompute_name,
+ /* .free = */ ggml_backend_kompute_free,
+ /* .get_default_buffer_type = */ ggml_backend_kompute_get_default_buffer_type,
+ /* .set_tensor_async = */ NULL,
+ /* .get_tensor_async = */ NULL,
+ /* .cpy_tensor_async = */ NULL,
+ /* .synchronize = */ NULL,
+ /* .graph_plan_create = */ NULL,
+ /* .graph_plan_free = */ NULL,
+ /* .graph_plan_compute = */ NULL,
+ /* .graph_compute = */ ggml_backend_kompute_graph_compute,
+ /* .supports_op = */ ggml_backend_kompute_supports_op,
+};
+
+ggml_backend_t ggml_backend_kompute_init(int device) {
+ GGML_ASSERT(s_kompute_context == nullptr);
+ s_kompute_context = new ggml_kompute_context(device);
+
+ ggml_backend_t kompute_backend = new ggml_backend {
+ /* .interface = */ kompute_backend_i,
+ /* .context = */ s_kompute_context,
+ };
+
+ return kompute_backend;
+}
+
+bool ggml_backend_is_kompute(ggml_backend_t backend) {
+ return backend && backend->iface.get_name == ggml_backend_kompute_name;
+}
+
+static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) {
+ GGML_UNUSED(params);
+ return ggml_backend_kompute_init(intptr_t(user_data));
+}
+
+extern "C" int ggml_backend_kompute_reg_devices();
+
+int ggml_backend_kompute_reg_devices() {
+ auto devices = ggml_vk_available_devices_internal(0);
+ for (const auto & device : devices) {
+ ggml_backend_register(
+ ggml_kompute_format_name(device.index).c_str(),
+ ggml_backend_reg_kompute_init,
+ ggml_backend_kompute_buffer_type(device.index),
+ reinterpret_cast<void *>(intptr_t(device.index))
+ );
+ }
+ return devices.size();
+}
diff --git a/ggml-kompute.h b/ggml-kompute.h
new file mode 100644
index 00000000..17146545
--- /dev/null
+++ b/ggml-kompute.h
@@ -0,0 +1,46 @@
+#pragma once
+
+#include "ggml.h"
+#include "ggml-backend.h"
+
+#include <stdbool.h>
+#include <stddef.h>
+#include <stdint.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct ggml_vk_device {
+ int index;
+ int type; // same as VkPhysicalDeviceType
+ size_t heapSize;
+ const char * name;
+ const char * vendor;
+ int subgroupSize;
+ uint64_t bufferAlignment;
+ uint64_t maxAlloc;
+};
+
+struct ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count);
+bool ggml_vk_get_device(struct ggml_vk_device * device, size_t memoryRequired, const char * name);
+bool ggml_vk_has_vulkan(void);
+bool ggml_vk_has_device(void);
+struct ggml_vk_device ggml_vk_current_device(void);
+
+//
+// backend API
+//
+
+// forward declaration
+typedef struct ggml_backend * ggml_backend_t;
+
+GGML_API ggml_backend_t ggml_backend_kompute_init(int device);
+
+GGML_API bool ggml_backend_is_kompute(ggml_backend_t backend);
+
+GGML_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
+
+#ifdef __cplusplus
+}
+#endif
diff --git a/kompute b/kompute
new file mode 160000
+Subproject 4565194ed7c32d1d2efa32ceab4d3c6cae00630
diff --git a/kompute-shaders/common.comp b/kompute-shaders/common.comp
new file mode 100644
index 00000000..62d62b02
--- /dev/null
+++ b/kompute-shaders/common.comp
@@ -0,0 +1,102 @@
+#extension GL_EXT_shader_16bit_storage: require
+#extension GL_EXT_shader_8bit_storage: require
+#extension GL_EXT_shader_explicit_arithmetic_types_float16: require
+#extension GL_EXT_shader_explicit_arithmetic_types_int8: require
+#extension GL_EXT_shader_explicit_arithmetic_types_int16: require
+#extension GL_EXT_control_flow_attributes: enable
+#extension GL_KHR_shader_subgroup_arithmetic : require
+#extension GL_EXT_debug_printf : enable
+
+#define QK4_0 32
+#define QK4_1 32
+
+#define GELU_COEF_A 0.044715
+#define SQRT_2_OVER_PI 0.79788456080286535587989211986876
+#define TWOPI_F 6.283185307179586f
+
+#define QK_K 256
+
+#define u8BufToU16(buf, idx) (((uint16_t(buf[idx + 1]) << 8)) | buf[idx])
+#define u8BufToFloat16(buf, idx) uint16BitsToHalf u8BufToU16(buf, idx)
+#define u8BufToU32(buf, idx) (((uint32_t u8BufToU16(buf, idx + 2) << 8 | buf[idx + 1]) << 8) | buf[idx])
+#define u8BufToFloat(buf, idx) uintBitsToFloat u8BufToU32(buf, idx)
+
+#define sizeof_block_q4_0 0x12
+struct block_q4_0 {
+ float16_t d;
+ uint8_t qs[QK4_0 / 2];
+};
+mat4 dequantize_q4_0(const block_q4_0 xb, uint il) {
+ const float d1 = il != 0 ? (xb.d / 16.f) : xb.d;
+ const float d2 = d1 / 256.f;
+ const float md = -8.f * xb.d;
+ const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F);
+ const uint16_t mask1 = mask0 << 8;
+
+ mat4 reg;
+ for (int i=0;i<8;i++) {
+ uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]);
+ reg[i/2][2*(i%2)+0] = d1 * (b & mask0) + md;
+ reg[i/2][2*(i%2)+1] = d2 * (b & mask1) + md;
+ }
+ return reg;
+}
+
+#define sizeof_block_q4_1 0x14
+struct block_q4_1 {
+ float16_t d;
+ float16_t m;
+ uint8_t qs[QK4_1 / 2];
+};
+mat4 dequantize_q4_1(const block_q4_1 xb, uint il) {
+ const float d1 = il != 0 ? (xb.d / 16.f) : xb.d;
+ const float d2 = d1 / 256.f;
+ const float m = xb.m;
+ const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F);
+ const uint16_t mask1 = mask0 << 8;
+
+ mat4 reg;
+ for (int i=0;i<8;i++) {
+ uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]);
+ reg[i/2][2*(i%2)+0] = ((b & mask0) * d1) + m;
+ reg[i/2][2*(i%2)+1] = ((b & mask1) * d2) + m;
+ }
+ return reg;
+}
+
+#define sizeof_block_q6_k 210
+struct block_q6_k {
+ uint8_t ql[QK_K/2]; // quants, lower 4 bits
+ uint8_t qh[QK_K/4]; // quants, upper 2 bits
+ int8_t scales[QK_K/16]; // scales, quantized with 8 bits
+ float16_t d; // super-block scale
+};
+mat4 dequantize_q6_k(const block_q6_k xb, uint il) {
+ const float16_t d_all = xb.d;
+
+ const uint qlIndex = 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
+ const uint qhIndex = 32*(il/8) + 16*(il&1);
+ float16_t sc = xb.scales[(il%2) + 2 * ((il/2))];
+ il = (il/2) & 3;
+
+ const uint16_t kmask1 = il>1 ? uint16_t(il>2 ? 192 : 48) : uint16_t(il>0 ? 12 : 3);
+ const uint16_t kmask2 = il>1 ? uint8_t(0xF0) : uint8_t(0x0F);
+ const float16_t coef = il>1 ? float16_t(1.f/16.f) : float16_t(1.f);
+ const float16_t ml = float16_t(d_all * sc * 32.f);
+ const float16_t dl = float16_t(d_all * sc * coef);
+ mat4 reg;
+ for (int i = 0; i < 16; ++i) {
+ const float16_t q = (il&1) != 0 ? ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 2))
+ : ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 4));
+ reg[i/4][i%4] = dl * q - ml;
+ }
+ return reg;
+}
+
+
+#define QK8_0 32
+// struct block_q8_0 {
+// float16_t d; // delta
+// int8_t qs[QK8_0]; // quants
+// };
+#define sizeof_block_q8_0 34
diff --git a/kompute-shaders/op_add.comp b/kompute-shaders/op_add.comp
new file mode 100644
index 00000000..b7b76a79
--- /dev/null
+++ b/kompute-shaders/op_add.comp
@@ -0,0 +1,58 @@
+#version 450
+
+#include "common.comp"
+
+layout(local_size_x = 1024) in;
+
+layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
+layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
+layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
+
+layout(push_constant) uniform PushConstants {
+ uint inAOff;
+ uint inBOff;
+ uint outOff;
+ int ne00;
+ int nb00;
+ int nb01;
+ int nb02;
+ int nb03;
+ int ne10;
+ int ne11;
+ int ne12;
+ int ne13;
+ int nb10;
+ int nb11;
+ int nb12;
+ int nb13;
+ int ne0;
+ int nb0;
+ int nb1;
+ int nb2;
+ int nb3;
+ //int offs; // TODO: needed for GGML_OP_ACC, see metal code
+} pcs;
+
+// general-purpose kernel for addition of two tensors
+// pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3
+// cons: not very efficient
+void main() {
+ const uint i03 = gl_WorkGroupID.z;
+ const uint i02 = gl_WorkGroupID.y;
+ const uint i01 = gl_WorkGroupID.x;
+
+ const uint i13 = i03 % pcs.ne13;
+ const uint i12 = i02 % pcs.ne12;
+ const uint i11 = i01 % pcs.ne11;
+
+ int offs = 0; // TMP (see above)
+
+ uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + offs) / 4);
+ uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11 ) / 4);
+ uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1 + offs) / 4);
+
+ for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) {
+ const uint i10 = i0 % pcs.ne10;
+ out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] + inB[pcs.inBOff + src1_off + i10];
+ }
+}
diff --git a/kompute-shaders/op_addrow.comp b/kompute-shaders/op_addrow.comp
new file mode 100644
index 00000000..2376a6b8
--- /dev/null
+++ b/kompute-shaders/op_addrow.comp
@@ -0,0 +1,25 @@
+#version 450
+
+#include "common.comp"
+
+layout(local_size_x = 1) in;
+
+layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
+layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
+layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
+
+layout(push_constant) uniform PushConstants {
+ uint inAOff;
+ uint inBOff;
+ uint outOff;
+ uint row;
+} pcs;
+
+void main() {
+ const uint baseIndex = gl_WorkGroupID.x * 4;
+
+ for (uint x = 0; x < 4; x++) {
+ const uint i = baseIndex + x;
+ out_[i + pcs.outOff] = inA[i + pcs.inAOff] + inB[(i % pcs.row) + pcs.inBOff];
+ }
+}
diff --git a/kompute-shaders/op_cpy_f16_f16.comp b/kompute-shaders/op_cpy_f16_f16.comp
new file mode 100644
index 00000000..d57247d2
--- /dev/null
+++ b/kompute-shaders/op_cpy_f16_f16.comp
@@ -0,0 +1,52 @@
+#version 450
+
+#include "common.comp"
+
+#define IN_TYPE float16_t
+#define IN_TYPE_SIZE 2
+#define OUT_TYPE float16_t
+#define OUT_TYPE_SIZE 2
+
+layout(local_size_x = 1024) in;
+
+layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
+layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
+
+layout (push_constant) uniform parameter {
+ uint inOff;
+ uint outOff;
+ int ne00;
+ int ne01;
+ int ne02;
+ uint nb00;
+ uint nb01;
+ uint nb02;
+ uint nb03;
+ int ne0;
+ int ne1;
+ int ne2;
+ uint nb0;
+ uint nb1;
+ uint nb2;
+ uint nb3;
+} pcs;
+
+void main() {
+ const uint i03 = gl_WorkGroupID.z;
+ const uint i02 = gl_WorkGroupID.y;
+ const uint i01 = gl_WorkGroupID.x;
+
+ const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
+
+ const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
+ const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
+ const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
+ const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
+
+ const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
+
+ for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
+ const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
+ out_[dst_data+i00] = OUT_TYPE(in_[src]);
+ }
+}
diff --git a/kompute-shaders/op_cpy_f16_f32.comp b/kompute-shaders/op_cpy_f16_f32.comp
new file mode 100644
index 00000000..b568bcd7
--- /dev/null
+++ b/kompute-shaders/op_cpy_f16_f32.comp
@@ -0,0 +1,52 @@
+#version 450
+
+#include "common.comp"
+
+#define IN_TYPE float16_t
+#define IN_TYPE_SIZE 2
+#define OUT_TYPE float
+#define OUT_TYPE_SIZE 4
+
+layout(local_size_x = 1024) in;
+
+layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
+layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
+
+layout (push_constant) uniform parameter {
+ uint inOff;
+ uint outOff;
+ int ne00;
+ int ne01;
+ int ne02;
+ uint nb00;
+ uint nb01;
+ uint nb02;
+ uint nb03;
+ int ne0;
+ int ne1;
+ int ne2;
+ uint nb0;
+ uint nb1;
+ uint nb2;
+ uint nb3;
+} pcs;
+
+void main() {
+ const uint i03 = gl_WorkGroupID.z;
+ const uint i02 = gl_WorkGroupID.y;
+ const uint i01 = gl_WorkGroupID.x;
+
+ const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
+
+ const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
+ const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
+ const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
+ const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
+
+ const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
+
+ for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
+ const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
+ out_[dst_data+i00] = OUT_TYPE(in_[src]);
+ }
+}
diff --git a/kompute-shaders/op_cpy_f32_f16.comp b/kompute-shaders/op_cpy_f32_f16.comp
new file mode 100644
index 00000000..99b22834
--- /dev/null
+++ b/kompute-shaders/op_cpy_f32_f16.comp
@@ -0,0 +1,52 @@
+#version 450
+
+#include "common.comp"
+
+#define IN_TYPE float
+#define IN_TYPE_SIZE 4
+#define OUT_TYPE float16_t
+#define OUT_TYPE_SIZE 2
+
+layout(local_size_x = 1024) in;
+
+layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
+layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
+
+layout (push_constant) uniform parameter {
+ uint inOff;
+ uint outOff;
+ int ne00;
+ int ne01;
+ int ne02;
+ uint nb00;
+ uint nb01;
+ uint nb02;
+ uint nb03;
+ int ne0;
+ int ne1;
+ int ne2;
+ uint nb0;
+ uint nb1;
+ uint nb2;
+ uint nb3;
+} pcs;
+
+void main() {
+ const uint i03 = gl_WorkGroupID.z;
+ const uint i02 = gl_WorkGroupID.y;
+ const uint i01 = gl_WorkGroupID.x;
+
+ const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
+
+ const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
+ const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
+ const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
+ const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
+
+ const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
+
+ for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
+ const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
+ out_[dst_data+i00] = OUT_TYPE(in_[src]);
+ }
+}
diff --git a/kompute-shaders/op_cpy_f32_f32.comp b/kompute-shaders/op_cpy_f32_f32.comp
new file mode 100644
index 00000000..2fc99849
--- /dev/null
+++ b/kompute-shaders/op_cpy_f32_f32.comp
@@ -0,0 +1,52 @@
+#version 450
+
+#include "common.comp"
+
+#define IN_TYPE float
+#define IN_TYPE_SIZE 4
+#define OUT_TYPE float
+#define OUT_TYPE_SIZE 4
+
+layout(local_size_x = 1024) in;
+
+layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
+layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
+
+layout (push_constant) uniform parameter {
+ uint inOff;
+ uint outOff;
+ int ne00;
+ int ne01;
+ int ne02;
+ uint nb00;
+ uint nb01;
+ uint nb02;
+ uint nb03;
+ int ne0;
+ int ne1;
+ int ne2;
+ uint nb0;
+ uint nb1;
+ uint nb2;
+ uint nb3;
+} pcs;
+
+void main() {
+ const uint i03 = gl_WorkGroupID.z;
+ const uint i02 = gl_WorkGroupID.y;
+ const uint i01 = gl_WorkGroupID.x;
+
+ const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
+
+ const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
+ const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
+ const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
+ const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
+
+ const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
+
+ for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
+ const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
+ out_[dst_data+i00] = OUT_TYPE(in_[src]);
+ }
+}
diff --git a/kompute-shaders/op_diagmask.comp b/kompute-shaders/op_diagmask.comp
new file mode 100644
index 00000000..291c3fc1
--- /dev/null
+++ b/kompute-shaders/op_diagmask.comp
@@ -0,0 +1,30 @@
+#version 450
+
+#include "common.comp"
+
+layout(local_size_x = 1) in;
+
+layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
+layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
+
+layout(push_constant) uniform PushConstants {
+ uint inOff;
+ uint outOff;
+ uint n_past;
+ int ne00;
+ int ne01;
+} pcs;
+
+void main() {
+ const uint i02 = gl_WorkGroupID.z;
+ const uint i01 = gl_WorkGroupID.y;
+ const uint i00 = gl_WorkGroupID.x;
+
+ const uint index = i02*pcs.ne01*pcs.ne00 + i01*pcs.ne00 + i00;
+
+ if (i00 > pcs.n_past + i01) {
+ out_[index + pcs.outOff] = uintBitsToFloat(0xFF800000);
+ } else {
+ out_[index + pcs.outOff] = in_[index + pcs.inOff];
+ }
+}
diff --git a/kompute-shaders/op_gelu.comp b/kompute-shaders/op_gelu.comp
new file mode 100644
index 00000000..9d8c5371
--- /dev/null
+++ b/kompute-shaders/op_gelu.comp
@@ -0,0 +1,22 @@
+#version 450
+
+#include "common.comp"
+
+layout(local_size_x = 1) in;
+
+layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
+layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
+layout(push_constant) uniform PushConstants {
+ uint inOff;
+ uint outOff;
+} pcs;
+
+void main() {
+ const uint baseIndex = gl_WorkGroupID.x * 8;
+
+ for (uint x = 0; x < 8; x++) {
+ const uint i = baseIndex + x;
+ const float y = in_[i + pcs.inOff];
+ out_[i + pcs.outOff] = 0.5*y*(1.0 + tanh(clamp(SQRT_2_OVER_PI*y*(1.0 + GELU_COEF_A*y*y), -15.0, 15.0)));
+ }
+}
diff --git a/kompute-shaders/op_getrows.comp b/kompute-shaders/op_getrows.comp
new file mode 100644
index 00000000..1a5581b2
--- /dev/null
+++ b/kompute-shaders/op_getrows.comp
@@ -0,0 +1,17 @@
+void main() {
+ const uint i = gl_WorkGroupID.x;
+ const int r = inB[i + pcs.inBOff];
+
+ int z = 0;
+ for (uint ind = gl_LocalInvocationID.x; ind < pcs.ne00/16; ind += gl_WorkGroupSize.x) {
+ const uint inIndex = (r * pcs.nb01 + pcs.inAOff) + ind/NL * SIZE_OF_BLOCK;
+ const mat4 result = dequantize_block(inIndex, ind%NL);
+ for (uint j = 0; j < 4; ++j) {
+ for (uint k = 0; k < 4; ++k) {
+ const uint outIndex = i * pcs.nb1/BYTES_FOR_TYPE + pcs.outOff + z;
+ out_[outIndex] = result[j][k];
+ ++z;
+ }
+ }
+ }
+}
diff --git a/kompute-shaders/op_getrows_f16.comp b/kompute-shaders/op_getrows_f16.comp
new file mode 100644
index 00000000..48c93610
--- /dev/null
+++ b/kompute-shaders/op_getrows_f16.comp
@@ -0,0 +1,31 @@
+#version 450
+
+#include "common.comp"
+
+layout(local_size_x = 1) in;
+
+layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; };
+layout (binding = 1) readonly buffer tensorInB { int inB[]; };
+layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
+
+layout (push_constant) uniform parameter {
+ uint inAOff;
+ uint inBOff;
+ uint outOff;
+ int ne00;
+ int nb01;
+ int nb1;
+} pcs;
+
+void dequantize_row_f16(uint x /*Based from inA unaligned*/, uint y /*Based from out_*/, int k) {
+ for (int j = 0; j < k; j++) {
+ out_[y + j] = inA[x + j];
+ }
+}
+
+void main() {
+ const uint i = gl_WorkGroupID.x;
+ const int r = inB[i + pcs.inBOff];
+
+ dequantize_row_f16(r*pcs.nb01/2/*bytes for float16*/ + pcs.inAOff, i*pcs.nb1/4 + pcs.outOff, pcs.ne00);
+}
diff --git a/kompute-shaders/op_getrows_q4_0.comp b/kompute-shaders/op_getrows_q4_0.comp
new file mode 100644
index 00000000..32b2e891
--- /dev/null
+++ b/kompute-shaders/op_getrows_q4_0.comp
@@ -0,0 +1,38 @@
+#version 450
+
+#include "common.comp"
+
+#define NL 2
+#define BYTES_FOR_TYPE 4 /*bytes for float*/
+#define SIZE_OF_BLOCK sizeof_block_q4_0
+
+layout(local_size_x = 1) in;
+
+layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
+layout (binding = 1) readonly buffer tensorInB { int inB[]; };
+layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
+
+layout (push_constant) uniform parameter {
+ uint inAOff;
+ uint inBOff;
+ uint outOff;
+ int ne00;
+ int nb01;
+ int nb1;
+} pcs;
+
+block_q4_0 get_unaligned_block_q4_0(uint index) {
+ block_q4_0 fres;
+ fres.d = u8BufToFloat16(inA, index);
+ [[unroll]] for (uint it = 0; it != QK4_0 / 2; it++) {
+ fres.qs[it] = inA[index+2+it];
+ }
+ return fres;
+}
+
+mat4 dequantize_block(uint index, uint il) {
+ const block_q4_0 block = get_unaligned_block_q4_0(index);
+ return dequantize_q4_0(block, il);
+}
+
+#include "op_getrows.comp"
diff --git a/kompute-shaders/op_getrows_q4_1.comp b/kompute-shaders/op_getrows_q4_1.comp
new file mode 100644
index 00000000..87f2fbe1
--- /dev/null
+++ b/kompute-shaders/op_getrows_q4_1.comp
@@ -0,0 +1,39 @@
+#version 450
+
+#include "common.comp"
+
+#define NL 2
+#define BYTES_FOR_TYPE 4 /*bytes for float*/
+#define SIZE_OF_BLOCK sizeof_block_q4_1
+
+layout(local_size_x = 1) in;
+
+layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
+layout (binding = 1) readonly buffer tensorInB { int inB[]; };
+layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
+
+layout (push_constant) uniform parameter {
+ uint inAOff;
+ uint inBOff;
+ uint outOff;
+ int ne00;
+ int nb01;
+ int nb1;
+} pcs;
+
+block_q4_1 get_unaligned_block_q4_1(uint index) {
+ block_q4_1 fres;
+ fres.d = u8BufToFloat16(inA, index);
+ fres.m = u8BufToFloat16(inA, index+2);
+ [[unroll]] for (uint it = 0; it != QK4_1 / 2; it++) {
+ fres.qs[it] = inA[index+4+it];
+ }
+ return fres;
+}
+
+mat4 dequantize_block(uint index, uint il) {
+ const block_q4_1 block = get_unaligned_block_q4_1(index);
+ return dequantize_q4_1(block, il);
+}
+
+#include "op_getrows.comp"
diff --git a/kompute-shaders/op_getrows_q6_k.comp b/kompute-shaders/op_getrows_q6_k.comp
new file mode 100644
index 00000000..9ce3545d
--- /dev/null
+++ b/kompute-shaders/op_getrows_q6_k.comp
@@ -0,0 +1,44 @@
+#version 450
+
+#include "common.comp"
+
+#define NL 16
+#define BYTES_FOR_TYPE 4 /*bytes for float*/
+#define SIZE_OF_BLOCK sizeof_block_q6_k
+
+layout(local_size_x = 1) in;
+
+layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
+layout (binding = 1) readonly buffer tensorInB { int inB[]; };
+layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
+
+layout (push_constant) uniform parameter {
+ uint inAOff;
+ uint inBOff;
+ uint outOff;
+ int ne00;
+ int nb01;
+ int nb1;
+} pcs;
+
+block_q6_k get_unaligned_block_q6_k(uint index) {
+ block_q6_k fres;
+ [[unroll]] for (uint it = 0; it != QK_K / 2; it++) {
+ fres.ql[it] = inA[index + it];
+ }
+ [[unroll]] for (uint it = 0; it != QK_K / 4; it++) {
+ fres.qh[it] = inA[index + QK_K/2 + it];
+ }
+ [[unroll]] for (uint it = 0; it != QK_K / 16; it++) {
+ fres.scales[it] = int8_t(inA[index + QK_K/2 + QK_K/4 + it]);
+ }
+ fres.d = u8BufToFloat16(inA, index + QK_K/2 + QK_K/4 + QK_K/16);
+ return fres;
+}
+
+mat4 dequantize_block(uint index, uint il) {
+ const block_q6_k block = get_unaligned_block_q6_k(index);
+ return dequantize_q6_k(block, il);
+}
+
+#include "op_getrows.comp"
diff --git a/kompute-shaders/op_mul.comp b/kompute-shaders/op_mul.comp
new file mode 100644
index 00000000..c92647c4
--- /dev/null
+++ b/kompute-shaders/op_mul.comp
@@ -0,0 +1,52 @@
+#version 450
+
+#include "common.comp"
+
+layout(local_size_x = 1024) in;
+
+layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
+layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
+layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
+
+layout(push_constant) uniform PushConstants {
+ uint inAOff;
+ uint inBOff;
+ uint outOff;
+ int ne00;
+ int nb00;
+ int nb01;
+ int nb02;
+ int nb03;
+ int ne10;
+ int ne11;
+ int ne12;
+ int ne13;
+ int nb10;
+ int nb11;
+ int nb12;
+ int nb13;
+ int ne0;
+ int nb0;
+ int nb1;
+ int nb2;
+ int nb3;
+} pcs;
+
+void main() {
+ const uint i03 = gl_WorkGroupID.z;
+ const uint i02 = gl_WorkGroupID.y;
+ const uint i01 = gl_WorkGroupID.x;
+
+ const uint i13 = i03 % pcs.ne13;
+ const uint i12 = i02 % pcs.ne12;
+ const uint i11 = i01 % pcs.ne11;
+
+ uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01) / 4);
+ uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11) / 4);
+ uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1) / 4);
+
+ for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) {
+ const uint i10 = i0 % pcs.ne10;
+ out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] * inB[pcs.inBOff + src1_off + i10];
+ }
+}
diff --git a/kompute-shaders/op_mul_mat_f16.comp b/kompute-shaders/op_mul_mat_f16.comp
new file mode 100644
index 00000000..8f0a9031
--- /dev/null
+++ b/kompute-shaders/op_mul_mat_f16.comp
@@ -0,0 +1,67 @@
+#version 450
+
+#include "common.comp"
+
+#extension GL_KHR_shader_subgroup_arithmetic : require
+
+layout(local_size_x_id = 0) in;
+
+layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; };
+layout (binding = 1) readonly buffer tensorInB { float inB[]; };
+layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
+
+layout (push_constant) uniform parameter {
+ uint inAOff;
+ uint inBOff;
+ uint outOff;
+ int ne00;
+ int ne01;
+ int ne02;
+ uint nb00;
+ uint nb01;
+ uint nb02;
+ int ne10;
+ int ne11;
+ int ne12;
+ uint nb10;
+ uint nb11;
+ uint nb12;
+ int ne0;
+ int ne1;
+ uint r2;
+ uint r3;
+} pcs;
+
+#define N_F16_F32 4
+
+void main() {
+ const uint r0 = gl_WorkGroupID.x;
+ const uint rb = gl_WorkGroupID.y*N_F16_F32;
+ const uint im = gl_WorkGroupID.z;
+
+ const uint i12 = im%pcs.ne12;
+ const uint i13 = im/pcs.ne12;
+
+ const uint offset0 = r0*pcs.nb01 + (i12/pcs.r2)*pcs.nb02 + (i13/pcs.r3)*pcs.nb02*pcs.ne02;
+
+ const uint x = offset0 / 2 + pcs.inAOff; // Based from inA
+
+ for (uint row = 0; row < N_F16_F32; ++row) {
+ uint r1 = rb + row;
+ if (r1 >= pcs.ne11) {
+ break;
+ }
+
+ const uint y = (r1*pcs.nb11 + im*pcs.nb12) / 4 + pcs.inBOff; // Based from inB
+
+ float sumf = 0;
+ for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) {
+ sumf += float(inA[x+i]) * float(inB[y+i]);
+ }
+
+ const float all_sum = subgroupAdd(sumf);
+ if (subgroupElect()) {
+ out_[im*pcs.ne1*pcs.ne0 + r1*pcs.ne0 + r0 + pcs.outOff] = all_sum;
+ }
+ }
+}
diff --git a/kompute-shaders/op_mul_mat_mat_f32.comp b/kompute-shaders/op_mul_mat_mat_f32.comp
new file mode 100644
index 00000000..d1ca4ad6
--- /dev/null
+++ b/kompute-shaders/op_mul_mat_mat_f32.comp
@@ -0,0 +1,51 @@
+#version 450
+
+#include "common.comp"
+
+#extension GL_KHR_shader_subgroup_arithmetic : require
+#extension GL_EXT_debug_printf : enable
+
+// device subgroup size
+layout (local_size_x_id = 0) in;
+
+layout(binding = 0) readonly buffer tensorInA { float inA[]; };
+layout(binding = 1) readonly buffer tensorInB { float inB[]; };
+layout(binding = 2) writeonly buffer tensorOut { float out_[]; };
+
+layout(push_constant) uniform parameter {
+ uint inAOff;
+ uint inBOff;
+ uint outOff;
+ int ne00;
+ int ne01;
+ int ne02;
+ int ne11;
+ int ne12;
+ uint nb01;
+ uint nb02;
+ uint nb11;
+ uint nb12;
+ uint nb1;
+ uint nb2;
+}
+pcs;
+
+
+void main() {
+ uvec3 gid = gl_WorkGroupID;
+
+ uint bc_ab = pcs.ne12 > pcs.ne02 ? gid.z / (pcs.ne12 / pcs.ne02) : gid.z;
+ uint bc_ba = pcs.ne02 > pcs.ne12 ? gid.z / (pcs.ne02 / pcs.ne12) : gid.z;
+
+ const uint x = (gid.x*pcs.nb01 + bc_ab*pcs.nb02) / 4 + pcs.inAOff; // Based from inA
+ const uint y = (gid.y*pcs.nb11 + bc_ba*pcs.nb12) / 4 + pcs.inBOff; // based from inB
+ float sum = 0.0f;
+ for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) {
+ sum += float(inA[x+i]) * float(inB[y+i]);
+ }
+
+ const float all_sum = subgroupAdd(sum);
+ if (subgroupElect()) {
+ out_[gid.z*(pcs.nb2/4) + gid.y*(pcs.nb1/4) + gid.x + pcs.outOff] = all_sum;
+ }
+}
diff --git a/kompute-shaders/op_mul_mat_q4_0.comp b/kompute-shaders/op_mul_mat_q4_0.comp
new file mode 100644
index 00000000..b0cea8bb
--- /dev/null
+++ b/kompute-shaders/op_mul_mat_q4_0.comp
@@ -0,0 +1,33 @@
+#version 450
+
+#include "common.comp"
+
+#define BLOCKS_IN_QUANT QK4_0
+#define SIZE_OF_BLOCK sizeof_block_q4_0
+#define N_ROWS 4
+
+#include "op_mul_mv_q_n_pre.comp"
+
+// The q4_0 version of this function
+float block_q_n_dot_y(uint block_index, uint yb, uint il) {
+ vec2 acc = vec2(0.0, 0.0);
+ const uint index = (block_index) * SIZE_OF_BLOCK + pcs.inAOff;
+ float d = float(u8BufToFloat16(inA, index));
+ float sumy = 0.0f;
+ for (int i = 0; i < BLOCKS_IN_QUANT/4; i+=2) {
+ const uint16_t b = u8BufToU16(inA, index + 2 + il + i);
+
+ const float yl0 = inB[yb + i];
+ const float yl1 = inB[yb + i + 1];
+ const float yl8 = inB[yb + i + BLOCKS_IN_QUANT/2];
+ const float yl9 = inB[yb + i + BLOCKS_IN_QUANT/2 + 1];
+
+ sumy += yl0 + yl1 + yl8 + yl9;
+
+ acc[0] += yl0 * (b & 0x000F) + yl1 / 256.f * (b & 0x0F00);
+ acc[1] += yl8 / 16.f * (b & 0x00F0) + yl9 / 4096.f * (b & 0xF000);
+ }
+ return d * (sumy * -8.f + acc[0] + acc[1]);
+}
+
+#include "op_mul_mv_q_n.comp"
diff --git a/kompute-shaders/op_mul_mat_q4_1.comp b/kompute-shaders/op_mul_mat_q4_1.comp
new file mode 100644
index 00000000..8582c61a
--- /dev/null
+++ b/kompute-shaders/op_mul_mat_q4_1.comp
@@ -0,0 +1,35 @@
+#version 450
+
+#include "common.comp"
+
+#define BLOCKS_IN_QUANT QK4_1
+#define SIZE_OF_BLOCK sizeof_block_q4_1
+#define N_ROWS 4
+
+#include "op_mul_mv_q_n_pre.comp"
+
+// The q4_1 version of this function
+float block_q_n_dot_y(uint block_index, uint yb, uint il) {
+ vec2 acc = vec2(0.0, 0.0);
+ const uint index = (block_index) * SIZE_OF_BLOCK + pcs.inAOff;
+ float d = float(u8BufToFloat16(inA, index));
+ float m = float(u8BufToFloat16(inA, index+2));
+
+ float sumy = 0.0f;
+ for (int i = 0; i < BLOCKS_IN_QUANT/4; i+=2) {
+ const uint16_t b = u8BufToU16(inA, index + 4 + il + i);
+
+ const float yl0 = inB[yb + i];
+ const float yl1 = inB[yb + i + 1];
+ const float yl8 = inB[yb + i + BLOCKS_IN_QUANT/2];
+ const float yl9 = inB[yb + i + BLOCKS_IN_QUANT/2 + 1];
+
+ sumy += yl0 + yl1 + yl8 + yl9;
+
+ acc[0] += yl0 * (b & 0x000F) + yl1 / 256.f * (b & 0x0F00);
+ acc[1] += yl8 / 16.f * (b & 0x00F0) + yl9 / 4096.f * (b & 0xF000);
+ }
+ return d * (acc[0] + acc[1]) + sumy * m;
+}
+
+#include "op_mul_mv_q_n.comp"
diff --git a/kompute-shaders/op_mul_mat_q6_k.comp b/kompute-shaders/op_mul_mat_q6_k.comp
new file mode 100644
index 00000000..c9baebdf
--- /dev/null
+++ b/kompute-shaders/op_mul_mat_q6_k.comp
@@ -0,0 +1,94 @@
+#version 450
+
+#include "common.comp"
+
+#define SIZE_OF_BLOCK sizeof_block_q6_k
+
+layout(local_size_x_id = 0) in;
+layout(local_size_y_id = 1) in;
+layout(local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
+layout (binding = 1) readonly buffer tensorInB { float inB[]; };
+layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
+
+layout (push_constant) uniform parameter {
+ uint inAOff;
+ uint inBOff;
+ uint outOff;
+ int ne00;
+ int ne10;
+ int ne0;
+ int ne1;
+ int ne01;
+ int gqa;
+} pcs;
+
+void main() {
+ const uint8_t kmask1 = uint8_t(0x03);
+ const uint8_t kmask2 = uint8_t(0x0C);
+ const uint8_t kmask3 = uint8_t(0x30);
+ const uint8_t kmask4 = uint8_t(0xC0);
+
+ const uint nb = pcs.ne00/QK_K;
+
+ const uint r0 = gl_WorkGroupID.x;
+ const uint r1 = gl_WorkGroupID.y;
+ const uint r2 = gl_WorkGroupID.z;
+
+ const uint row = (r0 * gl_NumSubgroups + gl_SubgroupID);
+ const uint offset0 = r2/pcs.gqa*(nb*pcs.ne0);
+ const uint x = row * nb + offset0; // Based from inA without base offset
+ const uint yy = r1*pcs.ne10 + r2*pcs.ne00*pcs.ne1+pcs.inBOff; // Based from inB
+
+ float sumf = 0;
+
+ // bits of invocation ID for gl_SubgroupSize=32:
+ // x x x x x
+ // 4 3 2 1 0
+ // ( tid ) ix
+ // ip ( il )
+
+ const uint block_stride = gl_SubgroupSize / 16; // number of blocks each subgroup processes
+ const uint tid = gl_SubgroupInvocationID/block_stride; // first block_stride groups have tid=0
+ const uint ix = gl_SubgroupInvocationID%block_stride; // first block is 0..block_stride-1
+ const uint ip = tid/8; // first or second half of block (0 or 1)
+ const uint il = tid%8; // each half has 8 parts, one per scale
+ const uint n = 4; // 4 scales at a time (and 4 sums)
+ const uint l0 = n*il; // offset into half-block, 0..28
+ const uint is = 8*ip + l0/16; // 0, 1, 8, 9
+
+ const uint y_offset = 128*ip + l0;
+ const uint q_offset_l = 64*ip + l0;
+ const uint q_offset_h = 32*ip + l0;
+
+ for (uint i = ix; i < nb; i += block_stride) {
+
+ const uint baseIndex = (x + i) * SIZE_OF_BLOCK + pcs.inAOff;
+
+ const uint qlIndex = q_offset_l;
+ const uint q2Index = qlIndex + QK_K/8;
+ const uint qhIndex = q_offset_h;
+ const uint y = yy + i * QK_K + y_offset;
+
+ float sums[4] = {0.0f, 0.0f, 0.0f, 0.0f};
+ for (uint l = 0; l < n; ++l) {
+ const uint8_t currentQ1 = inA[baseIndex + qlIndex + l];
+ const uint8_t currentQ2 = inA[baseIndex + q2Index + l];
+ const uint8_t currentQh = inA[baseIndex + QK_K/2 + qhIndex + l];
+
+ sums[0] += inB[y+l+ 0] * (int8_t((currentQ1 & 0xF) | ((currentQh & kmask1) << 4)) - 32);
+ sums[1] += inB[y+l+32] * (int8_t((currentQ2 & 0xF) | ((currentQh & kmask2) << 2)) - 32);
+ sums[2] += inB[y+l+64] * (int8_t((currentQ1 >> 4) | ((currentQh & kmask3) << 0)) - 32);
+ sums[3] += inB[y+l+96] * (int8_t((currentQ2 >> 4) | ((currentQh & kmask4) >> 2)) - 32);
+ }
+
+ float d = u8BufToFloat16(inA, baseIndex + QK_K/2 + QK_K/4 + QK_K/16);
+ sumf += d * (sums[0] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + is]) + sums[1] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 2 + is]) + sums[2] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 4 + is]) + sums[3] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 6 + is]));
+ }
+
+ const float tot = subgroupAdd(sumf);
+ if (subgroupElect()) {
+ out_[r1*pcs.ne0 + r2*pcs.ne0*pcs.ne1 + row + pcs.outOff] = tot;
+ }
+}
diff --git a/kompute-shaders/op_mul_mat_q8_0.comp b/kompute-shaders/op_mul_mat_q8_0.comp
new file mode 100644
index 00000000..34d015e9
--- /dev/null
+++ b/kompute-shaders/op_mul_mat_q8_0.comp
@@ -0,0 +1,73 @@
+#version 450
+
+#include "common.comp"
+
+#include "op_mul_mv_q_n_pre.comp"
+
+#define SIZE_OF_D 2
+
+#define N_DST 4 // each SIMD group works on 4 rows
+#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
+#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
+
+#define NB_Q8_0 8
+
+void main() {
+ // NB: hack to make compatible with AMD GPUs that have a subgroup size of 64
+ if (gl_SubgroupInvocationID > 31)
+ return;
+
+ const int nr = N_DST;
+ const int nsg = N_SIMDGROUP;
+ const int nw = N_SIMDWIDTH;
+
+ const int nb = pcs.ne00/QK8_0;
+ const uint r0 = gl_WorkGroupID.x;
+ const uint r1 = gl_WorkGroupID.y;
+ const uint im = gl_WorkGroupID.z;
+
+ const uint first_row = (r0 * nsg + gl_SubgroupID) * nr;
+
+ const uint i12 = im%pcs.ne12;
+ const uint i13 = im/pcs.ne12;
+
+ const uint offset0 = first_row * nb + (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
+
+ const uint x = offset0*sizeof_block_q8_0 + pcs.inAOff; // Based from inA
+ const uint y = r1*pcs.ne10 + im*pcs.ne00*pcs.ne1 + pcs.inBOff; // based from inB
+
+ float yl[NB_Q8_0];
+ float sumf[N_DST]={0.f, 0.f, 0.f, 0.f};
+
+ const uint ix = gl_SubgroupInvocationID.x/4;
+ const uint il = gl_SubgroupInvocationID.x%4;
+
+ uint yb = y + ix * QK8_0 + NB_Q8_0*il;
+
+ // each thread in a SIMD group deals with NB_Q8_0 quants at a time
+ for (uint ib = ix; ib < nb; ib += nw/4) {
+ for (int i = 0; i < NB_Q8_0; ++i) {
+ yl[i] = inB[yb + i];
+ }
+
+ for (int row = 0; row < nr; row++) {
+ const uint block_offset = (ib+row*nb) * sizeof_block_q8_0;
+ float sumq = 0.f;
+ for (int iq = 0; iq < NB_Q8_0; ++iq) {
+ const int8_t qs_iq = int8_t(inA[x + block_offset + SIZE_OF_D + NB_Q8_0*il + iq]);
+ sumq += qs_iq * yl[iq];
+ }
+ const float16_t d = u8BufToFloat16(inA, x + block_offset);
+ sumf[row] += sumq*d;
+ }
+
+ yb += NB_Q8_0 * nw;
+ }
+
+ for (int row = 0; row < nr; ++row) {
+ const float tot = subgroupAdd(sumf[row]);
+ if (subgroupElect() && first_row + row < pcs.ne01) {
+ out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row] = tot;
+ }
+ }
+}
diff --git a/kompute-shaders/op_mul_mv_q_n.comp b/kompute-shaders/op_mul_mv_q_n.comp
new file mode 100644
index 00000000..440b5ab2
--- /dev/null
+++ b/kompute-shaders/op_mul_mv_q_n.comp
@@ -0,0 +1,48 @@
+void main() {
+ // NB: hack to make compatible with AMD GPUs that have a subgroup size of 64
+ if (gl_SubgroupInvocationID > 31)
+ return;
+
+ const uint nb = uint(pcs.ne00/BLOCKS_IN_QUANT);
+
+ const uint r0 = gl_WorkGroupID.x;
+ const uint r1 = gl_WorkGroupID.y;
+ const uint im = gl_WorkGroupID.z;
+
+ const uint first_row = (r0 * gl_NumSubgroups + gl_SubgroupID) * N_ROWS;
+
+ const uint i12 = im%pcs.ne12;
+ const uint i13 = im/pcs.ne12;
+
+ const uint offset0 = first_row * nb + (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
+
+ const uint x = offset0; // Based from inA without base offset
+ const uint y = r1*uint(pcs.ne10)+im*pcs.ne00*pcs.ne1+pcs.inBOff; // Based from inB
+
+ float sumf[N_ROWS] = {0.0f, 0.0f, 0.0f, 0.0f};
+
+ const uint ix = gl_SubgroupInvocationID/2;
+ const uint il = (BLOCKS_IN_QUANT/4)*(gl_SubgroupInvocationID%2);
+
+ uint yb = y + ix * BLOCKS_IN_QUANT + il;
+
+ //debugPrintfEXT("gl_NumSubgroups=%d, gl_SubgroupID=%d, gl_SubgroupInvocationID=%d, glSubgroupSize=%d, gl_WorkGroupSize.x=%d, gl_WorkGroupSize.y=%d, gl_WorkGroupSize.z=%d\n",
+ // gl_NumSubgroups, gl_SubgroupID, gl_SubgroupInvocationID, gl_SubgroupSize,
+ // gl_WorkGroupSize.x, gl_WorkGroupSize.y, gl_WorkGroupSize.z);
+
+ for (uint ib = ix; ib < nb; ib += 16) {
+ for (int row = 0; row < N_ROWS; row++) {
+ const uint block_index = x + ib + row * nb;
+ sumf[row] += block_q_n_dot_y(block_index, yb, il);
+ }
+
+ yb += BLOCKS_IN_QUANT * 16;
+ }
+
+ for (int row = 0; row < N_ROWS; ++row) {
+ const float tot = subgroupAdd(sumf[row]);
+ if (first_row + row < pcs.ne01 && subgroupElect()) {
+ out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row + pcs.outOff] = tot;
+ }
+ }
+}
diff --git a/kompute-shaders/op_mul_mv_q_n_pre.comp b/kompute-shaders/op_mul_mv_q_n_pre.comp
new file mode 100644
index 00000000..7912b09a
--- /dev/null
+++ b/kompute-shaders/op_mul_mv_q_n_pre.comp
@@ -0,0 +1,22 @@
+layout(local_size_x_id = 0) in;
+layout(local_size_y = 1) in;
+layout(local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
+layout (binding = 1) readonly buffer tensorInB { float inB[]; };
+layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
+
+layout (push_constant) uniform parameter {
+ uint inAOff;
+ uint inBOff;
+ uint outOff;
+ int ne00;
+ int ne01;
+ int ne02;
+ int ne10;
+ int ne12;
+ int ne0;
+ int ne1;
+ uint r2;
+ uint r3;
+} pcs;
diff --git a/kompute-shaders/op_norm.comp b/kompute-shaders/op_norm.comp
new file mode 100644
index 00000000..ad0c3c01
--- /dev/null
+++ b/kompute-shaders/op_norm.comp
@@ -0,0 +1,84 @@
+#version 450
+
+#include "common.comp"
+
+layout(local_size_x = 256) in;
+
+layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
+layout(binding = 1) buffer restrict tensorOut { float out_[]; };
+
+layout(push_constant) uniform PushConstants {
+ uint inOff;
+ uint outOff;
+ uint ne00;
+ uint nb01;
+ float eps;
+} pcs;
+
+shared float sum[gl_WorkGroupSize.x];
+
+void main() {
+ const uint x = (gl_WorkGroupID.x*pcs.nb01/4) + pcs.inOff; // Based from in_
+ // MEAN
+ // parallel sum
+ sum[gl_LocalInvocationID.x] = 0.0;
+ for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
+ sum[gl_LocalInvocationID.x] += in_[x+i00];
+ }
+
+ // reduce
+ barrier();
+ memoryBarrierShared();
+ [[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
+ if (gl_LocalInvocationID.x < i) {
+ sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
+ }
+ barrier();
+ memoryBarrierShared();
+ }
+
+ // broadcast
+ if (gl_LocalInvocationID.x == 0) {
+ sum[0] /= float(pcs.ne00);
+ }
+ barrier();
+ memoryBarrierShared();
+ const float mean = sum[0];
+
+ // recenter
+ const uint y = (gl_WorkGroupID.x*pcs.ne00) + pcs.outOff; // Based from out_
+ for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
+ out_[y+i00] = in_[x+i00] - mean;
+ }
+
+ // VARIANCE
+ // parallel sum
+ sum[gl_LocalInvocationID.x] = 0.0;
+ for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
+ sum[gl_LocalInvocationID.x] += out_[y+i00] * out_[y+i00];
+ }
+
+ // reduce
+ barrier();
+ memoryBarrierShared();
+ [[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
+ if (gl_LocalInvocationID.x < i) {
+ sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
+ }
+ barrier();
+ memoryBarrierShared();
+ }
+
+ // broadcast
+ if (gl_LocalInvocationID.x == 0) {
+ sum[0] /= float(pcs.ne00);
+ }
+ barrier();
+ memoryBarrierShared();
+ const float variance = sum[0];
+
+ const float scale = 1.0f/sqrt(variance + pcs.eps);
+ for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
+ out_[y+i00] *= scale;
+ }
+}
diff --git a/kompute-shaders/op_relu.comp b/kompute-shaders/op_relu.comp
new file mode 100644
index 00000000..52a601fe
--- /dev/null
+++ b/kompute-shaders/op_relu.comp
@@ -0,0 +1,21 @@
+#version 450
+
+#include "common.comp"
+
+layout(local_size_x = 1) in;
+
+layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
+layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
+layout(push_constant) uniform PushConstants {
+ uint inOff;
+ uint outOff;
+} pcs;
+
+void main() {
+ const uint baseIndex = gl_WorkGroupID.x * 4;
+
+ for (uint x = 0; x < 4; x++) {
+ const uint i = baseIndex + x;
+ out_[i + pcs.outOff] = max(0.0, in_[i + pcs.inOff]);
+ }
+}
diff --git a/kompute-shaders/op_rmsnorm.comp b/kompute-shaders/op_rmsnorm.comp
new file mode 100644
index 00000000..da658c16
--- /dev/null
+++ b/kompute-shaders/op_rmsnorm.comp
@@ -0,0 +1,53 @@
+#version 450
+
+#include "common.comp"
+
+layout(local_size_x = 512) in;
+
+layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
+layout(binding = 1) buffer restrict tensorOut { float out_[]; };
+
+layout(push_constant) uniform PushConstants {
+ uint inOff;
+ uint outOff;
+ uint ne00;
+ uint nb01;
+ float eps;
+} pcs;
+
+shared float sum[gl_WorkGroupSize.x];
+
+void main() {
+ const uint x = (gl_WorkGroupID.x*pcs.nb01/4) + pcs.inOff; // Based from in_
+
+ // parallel sum
+ sum[gl_LocalInvocationID.x] = 0.0;
+ for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
+ sum[gl_LocalInvocationID.x] += in_[x+i00] * in_[x+i00];
+ }
+
+ // reduce
+ barrier();
+ memoryBarrierShared();
+ [[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
+ if (gl_LocalInvocationID.x < i) {
+ sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
+ }
+ barrier();
+ memoryBarrierShared();
+ }
+
+ // broadcast
+ if (gl_LocalInvocationID.x == 0) {
+ sum[0] /= float(pcs.ne00);
+ }
+ barrier();
+ memoryBarrierShared();
+
+ const float scale = 1.0f/sqrt(sum[0] + pcs.eps);
+
+ const uint y = (gl_WorkGroupID.x*pcs.ne00) + pcs.outOff; // Based from out_
+ for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
+ out_[y+i00] = in_[x+i00] * scale;
+ }
+}
diff --git a/kompute-shaders/op_rope_f16.comp b/kompute-shaders/op_rope_f16.comp
new file mode 100644
index 00000000..b4462258
--- /dev/null
+++ b/kompute-shaders/op_rope_f16.comp
@@ -0,0 +1,73 @@
+#version 450
+
+#include "rope_common.comp"
+
+layout(binding = 0) buffer restrict readonly tensorInA { float16_t inA[]; };
+layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
+layout(binding = 2) buffer restrict writeonly tensorOut { float16_t out_[]; };
+
+void main() {
+ const uint i3 = gl_WorkGroupID.z;
+ const uint i2 = gl_WorkGroupID.y;
+ const uint i1 = gl_WorkGroupID.x;
+
+ const bool is_neox = (pcs.mode & 2) != 0;
+
+ float corr_dims[2];
+ rope_yarn_corr_dims(pcs.n_dims, pcs.n_orig_ctx, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
+
+ const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
+
+ const int p = inB[pcs.inBOff + i2];
+
+ float theta = float(p);
+
+ if (!is_neox) {
+ for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) {
+ float cos_theta, sin_theta;
+ rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
+
+ theta *= theta_scale;
+
+ const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
+ const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
+
+ const float x0 = float(inA[src]);
+ const float x1 = float(inA[src+1]);
+
+ out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
+ out_[dst_data+1] = float16_t(x0*sin_theta + x1*cos_theta);
+ }
+ } else {
+ const float inv_ndims = -1.f/pcs.n_dims;
+ for (uint ic = 0; ic < pcs.n_dims; ic += 2) {
+ const uint cur_rot = ic;
+
+ float cos_theta, sin_theta;
+ rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
+
+ theta *= theta_scale;
+
+ const uint i0 = ic/2;
+
+ const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
+ const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
+
+ const float x0 = float(inA[src]);
+ const float x1 = float(inA[src+pcs.n_dims/2]);
+
+ out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
+ out_[dst_data+pcs.n_dims/2] = float16_t(x0*sin_theta + x1*cos_theta);
+ }
+
+ for (uint ic = pcs.n_dims; ic < pcs.ne0; ic += 2) {
+ const uint i0 = ic;
+
+ const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
+ const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
+
+ out_[dst_data + 0] = inA[src + 0];
+ out_[dst_data + 1] = inA[src + 1];
+ }
+ }
+}
diff --git a/kompute-shaders/op_rope_f32.comp b/kompute-shaders/op_rope_f32.comp
new file mode 100644
index 00000000..2c0235d7
--- /dev/null
+++ b/kompute-shaders/op_rope_f32.comp
@@ -0,0 +1,73 @@
+#version 450
+
+#include "rope_common.comp"
+
+layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
+layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
+layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
+
+void main() {
+ const uint i3 = gl_WorkGroupID.z;
+ const uint i2 = gl_WorkGroupID.y;
+ const uint i1 = gl_WorkGroupID.x;
+
+ const bool is_neox = (pcs.mode & 2) != 0;
+
+ float corr_dims[2];
+ rope_yarn_corr_dims(pcs.n_dims, pcs.n_orig_ctx, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
+
+ const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
+
+ const int p = inB[pcs.inBOff + i2];
+
+ float theta = float(p);
+
+ if (!is_neox) {
+ for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) {
+ float cos_theta, sin_theta;
+ rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
+
+ theta *= theta_scale;
+
+ const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
+ const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
+
+ const float x0 = inA[src];
+ const float x1 = inA[src+1];
+
+ out_[dst_data] = x0*cos_theta - x1*sin_theta;
+ out_[dst_data+1] = x0*sin_theta + x1*cos_theta;
+ }
+ } else {
+ const float inv_ndims = -1.f/pcs.n_dims;
+ for (uint ic = 0; ic < pcs.n_dims; ic += 2) {
+ const uint cur_rot = ic;
+
+ float cos_theta, sin_theta;
+ rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
+
+ theta *= theta_scale;
+
+ const uint i0 = ic/2;
+
+ const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
+ const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
+
+ const float x0 = inA[src];
+ const float x1 = inA[src+pcs.n_dims/2];
+
+ out_[dst_data] = x0*cos_theta - x1*sin_theta;
+ out_[dst_data+pcs.n_dims/2] = x0*sin_theta + x1*cos_theta;
+ }
+
+ for (uint ic = pcs.n_dims; ic < pcs.ne0; ic += 2) {
+ const uint i0 = ic;
+
+ const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
+ const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
+
+ out_[dst_data + 0] = inA[src + 0];
+ out_[dst_data + 1] = inA[src + 1];
+ }
+ }
+}
diff --git a/kompute-shaders/op_scale.comp b/kompute-shaders/op_scale.comp
new file mode 100644
index 00000000..bdae2673
--- /dev/null
+++ b/kompute-shaders/op_scale.comp
@@ -0,0 +1,19 @@
+#version 450
+
+#include "common.comp"
+
+layout(local_size_x = 1) in;
+
+layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
+layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
+
+layout(push_constant) uniform PushConstants {
+ uint inOff;
+ uint outOff;
+ float scale;
+} pcs;
+
+void main() {
+ const uint i = gl_WorkGroupID.x;
+ out_[i + pcs.outOff] = in_[i + pcs.inOff] * pcs.scale;
+}
diff --git a/kompute-shaders/op_scale_8.comp b/kompute-shaders/op_scale_8.comp
new file mode 100644
index 00000000..ada69754
--- /dev/null
+++ b/kompute-shaders/op_scale_8.comp
@@ -0,0 +1,23 @@
+#version 450
+
+#include "common.comp"
+
+layout(local_size_x = 1) in;
+
+layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
+layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
+
+layout(push_constant) uniform PushConstants {
+ uint inOff;
+ uint outOff;
+ float scale;
+} pcs;
+
+void main() {
+ const uint baseIndex = gl_WorkGroupID.x * 8;
+
+ for (uint x = 0; x < 8; x++) {
+ const uint i = baseIndex + x;
+ out_[i + pcs.outOff] = in_[i + pcs.inOff] * pcs.scale;
+ }
+}
diff --git a/kompute-shaders/op_silu.comp b/kompute-shaders/op_silu.comp
new file mode 100644
index 00000000..0fb8e4b7
--- /dev/null
+++ b/kompute-shaders/op_silu.comp
@@ -0,0 +1,22 @@
+#version 450
+
+#include "common.comp"
+
+layout(local_size_x = 1) in;
+
+layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
+layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
+layout(push_constant) uniform PushConstants {
+ uint inOff;
+ uint outOff;
+} pcs;
+
+void main() {
+ const uint baseIndex = gl_WorkGroupID.x * 4;
+
+ for (uint x = 0; x < 4; x++) {
+ const uint i = baseIndex + x;
+ const float y = in_[i + pcs.inOff];
+ out_[i + pcs.outOff] = y / (1.0 + exp(-y));
+ }
+}
diff --git a/kompute-shaders/op_softmax.comp b/kompute-shaders/op_softmax.comp
new file mode 100644
index 00000000..7bc9176c
--- /dev/null
+++ b/kompute-shaders/op_softmax.comp
@@ -0,0 +1,56 @@
+// TODO: implement multi-simd softmax (llama.cpp commit e16b9fa4)
+
+#version 450
+
+#include "common.comp"
+
+layout(local_size_x_id = 0) in;
+
+layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
+layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
+layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
+
+layout(push_constant) uniform PushConstants {
+ uint inAOff;
+ uint inBOff;
+ uint outOff;
+ int ne00;
+ int ne01;
+ int ne02;
+ float scale;
+ int mask;
+} pcs;
+
+void main() {
+ if (gl_SubgroupInvocationID > 31)
+ return;
+
+ const uint i03 = gl_WorkGroupID.z;
+ const uint i02 = gl_WorkGroupID.y;
+ const uint i01 = gl_WorkGroupID.x;
+
+ const uint extra_off = i03*pcs.ne02*pcs.ne01*pcs.ne00 + i02*pcs.ne01*pcs.ne00 + i01*pcs.ne00;
+ const uint psrc0 = extra_off + pcs.inAOff; // Based from inA
+ const uint pmask = i01*pcs.ne00 + pcs.inBOff; // Based from inB
+ const uint pdst = extra_off + pcs.outOff; // Based from out_
+
+ // parallel max
+ float localMax = uintBitsToFloat(0xFF800000);
+ for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
+ localMax = max(localMax, inA[psrc0 + i00]*pcs.scale + (pcs.mask!=0 ? inB[pmask + i00] : 0.0f));
+ }
+ float max_ = subgroupMax(localMax);
+
+ // parallel sum
+ float localSum = 0.0f;
+ for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
+ const float exp_psrc0 = exp(inA[psrc0 + i00]*pcs.scale + (pcs.mask!=0 ? inB[pmask + i00] : 0.0f) - max_);
+ localSum += exp_psrc0;
+ out_[pdst + i00] = exp_psrc0;
+ }
+
+ const float sum = subgroupAdd(localSum);
+ for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
+ out_[pdst + i00] /= sum;
+ }
+}
diff --git a/kompute-shaders/rope_common.comp b/kompute-shaders/rope_common.comp
new file mode 100644
index 00000000..57ba6597
--- /dev/null
+++ b/kompute-shaders/rope_common.comp
@@ -0,0 +1,67 @@
+#include "common.comp"
+
+// TODO: use a local size of 32 or more (Metal uses 1024)
+layout(local_size_x = 1) in;
+
+layout (push_constant) uniform parameter {
+ uint inAOff;
+ uint inBOff;
+ uint outOff;
+ int n_dims;
+ int mode;
+ int n_orig_ctx;
+ float freq_base;
+ float freq_scale;
+ float ext_factor;
+ float attn_factor;
+ float beta_fast;
+ float beta_slow;
+ uint nb00;
+ uint nb01;
+ uint nb02;
+ uint nb03;
+ int ne0;
+ uint nb0;
+ uint nb1;
+ uint nb2;
+ uint nb3;
+} pcs;
+
+float rope_yarn_ramp(const float low, const float high, const float i0) {
+ const float y = (i0 / 2 - low) / max(0.001f, high - low);
+ return 1.0f - min(1.0f, max(0.0f, y));
+}
+
+// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
+// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
+void rope_yarn(
+ float theta_extrap, float freq_scale, float corr_dims[2], float i0, float ext_factor, float mscale,
+ out float cos_theta, out float sin_theta
+) {
+ // Get n-d rotational scaling corrected for extrapolation
+ float theta_interp = freq_scale * theta_extrap;
+ float theta = theta_interp;
+ if (ext_factor != 0.0f) {
+ float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
+ theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+ // Get n-d magnitude scaling corrected for interpolation
+ mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
+ }
+ cos_theta = cos(theta) * mscale;
+ sin_theta = sin(theta) * mscale;
+}
+
+// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
+// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
+float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) {
+ return n_dims * log(n_orig_ctx / (n_rot * TWOPI_F)) / (2 * log(base));
+}
+
+void rope_yarn_corr_dims(
+ int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, out float dims[2]
+) {
+ // start and end correction dims
+ dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base)));
+ dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base)));
+}
diff --git a/llama.cpp b/llama.cpp
index 45569f7d..9631506c 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -15,6 +15,8 @@
# include "ggml-vulkan.h"
#elif defined(GGML_USE_SYCL)
# include "ggml-sycl.h"
+#elif defined(GGML_USE_KOMPUTE)
+# include "ggml-kompute.h"
#endif
#ifdef GGML_USE_METAL
@@ -1313,6 +1315,11 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
buft = ggml_backend_sycl_buffer_type(gpu);
#elif defined(GGML_USE_CLBLAST)
buft = ggml_backend_opencl_buffer_type();
+#elif defined(GGML_USE_KOMPUTE)
+ buft = ggml_backend_kompute_buffer_type(gpu);
+ if (buft == nullptr) {
+ LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
+ }
#endif
if (buft == nullptr) {
@@ -4107,7 +4114,7 @@ static bool llm_load_tensors(
}
// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
-static int llama_model_load(const std::string & fname, llama_model & model, const llama_model_params & params) {
+static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
try {
llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
@@ -4128,6 +4135,22 @@ static int llama_model_load(const std::string & fname, llama_model & model, cons
return 0;
}
+#ifdef GGML_USE_KOMPUTE
+ if (ggml_vk_has_device() && params.n_gpu_layers > 0 && (
+ !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
+ || !(
+ model.ftype == LLAMA_FTYPE_ALL_F32 ||
+ model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
+ model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
+ model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
+ )
+ )) {
+ // disable Vulkan due to unsupported model architecture or quantization type
+ // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
+ params.n_gpu_layers = 0;
+ }
+#endif
+
if (!llm_load_tensors(
ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
params.progress_callback, params.progress_callback_user_data
@@ -10259,6 +10282,16 @@ struct llama_context * llama_new_context_with_model(
}
ctx->backends.push_back(backend);
}
+#elif defined(GGML_USE_KOMPUTE)
+ if (model->n_gpu_layers > 0) {
+ auto * backend = ggml_backend_kompute_init(model->main_gpu);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ }
#endif
ctx->backend_cpu = ggml_backend_cpu_init();
if (ctx->backend_cpu == nullptr) {
diff --git a/llama.h b/llama.h
index 3e33072c..01b293e6 100644
--- a/llama.h
+++ b/llama.h
@@ -49,7 +49,8 @@
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 4
-#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
+#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
+ defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
#define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif
diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp
index 01593910..775147d4 100644
--- a/tests/test-backend-ops.cpp
+++ b/tests/test-backend-ops.cpp
@@ -370,12 +370,15 @@ struct test_case {
printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
fflush(stdout);
- // check if backends support op
+ // check if the backends support the ops
bool supported = true;
for (ggml_backend_t backend : {backend1, backend2}) {
- if (!ggml_backend_supports_op(backend, out)) {
- printf("not supported [%s] ", ggml_backend_name(backend));
- supported = false;
+ for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
+ if (!ggml_backend_supports_op(backend, t)) {
+ printf("not supported [%s] ", ggml_backend_name(backend));
+ supported = false;
+ break;
+ }
}
}
if (!supported) {
@@ -626,6 +629,13 @@ struct test_unary : public test_case {
ggml_tensor * out = ggml_unary(ctx, in, op);
return out;
}
+
+ void initialize_tensors(ggml_context * ctx) override {
+ for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
+ // test extended range of values to check for NaNs in GELU
+ init_tensor_uniform(t, -150.f, 150.f);
+ }
+ }
};
// GGML_OP_GET_ROWS
@@ -1066,18 +1076,24 @@ struct test_diag_mask_inf : public test_case {
struct test_soft_max : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
+ const float scale;
+ const bool mask;
std::string vars() override {
- return VARS_TO_STR2(type, ne);
+ return VARS_TO_STR4(type, ne, scale, mask);
}
test_soft_max(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10})
- : type(type), ne(ne) {}
+ std::array<int64_t, 4> ne = {10, 10, 10, 10},
+ float scale = 1.0f,
+ bool mask = false)
+ : type(type), ne(ne), scale(scale), mask(mask) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_soft_max(ctx, a);
+ ggml_tensor * b = nullptr;
+ if (mask) { b = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]); }
+ ggml_tensor * out = ggml_soft_max_ext(ctx, a, b, scale);
return out;
}
};
@@ -1474,6 +1490,393 @@ struct test_moe : public test_case {
}
};
+
+enum llm_norm_type {
+ LLM_NORM,
+ LLM_NORM_RMS,
+};
+
+struct llama_hparams {
+ uint32_t n_vocab;
+ uint32_t n_embd;
+ uint32_t n_head;
+ uint32_t n_head_kv;
+ static constexpr uint32_t n_layer = 1;
+ uint32_t n_rot;
+ uint32_t n_embd_head; // dimension of values (d_v)
+ uint32_t n_ff;
+
+ float f_norm_eps;
+ float f_norm_rms_eps;
+
+ // cparams
+ static constexpr uint32_t n_ctx = 512; // user-specified context size
+ static constexpr uint32_t n_orig_ctx = n_ctx;
+
+ // batch
+ int32_t n_tokens;
+
+ // llm_build_context
+ static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
+ static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
+
+ uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
+ return n_embd_head * n_head_kv;
+ }
+};
+
+// LLM base class
+struct test_llm : public test_case {
+ llama_hparams hp;
+
+protected:
+ test_llm(llama_hparams hp)
+ : hp(std::move(hp)) {
+ }
+
+public:
+ struct ggml_tensor * llm_build_norm(
+ struct ggml_context * ctx,
+ struct ggml_tensor * cur,
+ struct ggml_tensor * mw,
+ struct ggml_tensor * mb,
+ llm_norm_type type) {
+ switch (type) {
+ case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
+ case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
+ }
+ cur = ggml_mul(ctx, cur, mw);
+ if (mb) {
+ cur = ggml_add(ctx, cur, mb);
+ }
+ return cur;
+ }
+
+ void llm_build_kv_store(
+ struct ggml_context * ctx,
+ struct ggml_tensor * k_l,
+ struct ggml_tensor * v_l,
+ struct ggml_tensor * k_cur,
+ struct ggml_tensor * v_cur) {
+ // compute the transposed [n_tokens, n_embd] V matrix
+ struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
+
+ struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
+ (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
+
+ struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
+ ( hp.n_ctx)*ggml_element_size(v_l),
+ (hp.kv_head)*ggml_element_size(v_l));
+
+ // important: storing RoPE-ed version of K in the KV cache!
+ ggml_cpy(ctx, k_cur, k_cache_view);
+ ggml_cpy(ctx, v_cur_t, v_cache_view);
+ }
+
+ // if max_alibi_bias > 0 then apply ALiBi
+ struct ggml_tensor * llm_build_kqv(
+ struct ggml_context * ctx,
+ struct ggml_tensor * k_l,
+ struct ggml_tensor * v_l,
+ struct ggml_tensor * q_cur,
+ struct ggml_tensor * kq_mask,
+ float kq_scale) {
+ struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
+
+ struct ggml_tensor * k =
+ ggml_view_3d(ctx, k_l,
+ hp.n_embd_head, hp.n_kv, hp.n_head_kv,
+ ggml_row_size(k_l->type, hp.n_embd_gqa()),
+ ggml_row_size(k_l->type, hp.n_embd_head),
+ 0);
+
+ struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
+
+ kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale);
+
+ // split cached v into n_head heads
+ struct ggml_tensor * v =
+ ggml_view_3d(ctx, v_l,
+ hp.n_kv, hp.n_embd_head, hp.n_head_kv,
+ ggml_element_size(v_l)*hp.n_ctx,
+ ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
+ 0);
+
+ struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
+
+ struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
+
+ struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
+
+ struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
+ cur = ggml_mul_mat(ctx, wo, cur);
+
+ return cur;
+ }
+
+ void initialize_tensors(ggml_context * ctx) override {
+ for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
+ if (t->type == GGML_TYPE_I32) {
+ // pos
+ std::vector<int> data(hp.n_tokens);
+ for (int i = 0; i < hp.n_tokens; i++) {
+ data[i] = rand() % hp.n_ctx;
+ }
+ ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
+ } else {
+ init_tensor_uniform(t);
+ }
+ }
+ }
+};
+
+
+// Llama
+struct test_llama : public test_llm {
+ static constexpr float freq_base = 10000.0f;
+ static constexpr float freq_scale = 1.0f;
+ static constexpr float ext_factor = 0.0f;
+ static constexpr float attn_factor = 1.0f;
+ static constexpr float beta_fast = 32.0f;
+ static constexpr float beta_slow = 1.0f;
+
+ std::string op_desc(ggml_tensor * t) override {
+ GGML_UNUSED(t);
+ return "LLAMA";
+ }
+
+ std::string vars() override {
+ auto n_tokens = hp.n_tokens;
+ return VARS_TO_STR1(n_tokens);
+ }
+
+ double max_nmse_err() override {
+ return 2e-3;
+ }
+
+ test_llama(int n_tokens = 1)
+ : test_llm({
+ /*n_vocab =*/ 32000,
+ /*n_embd =*/ 3200,
+ /*n_head =*/ 32,
+ /*n_head_kv =*/ 32,
+ /*n_rot =*/ 100,
+ /*n_embd_head =*/ 100,
+ /*n_ff =*/ 8640,
+ /*f_norm_eps =*/ 0.f,
+ /*f_norm_rms_eps =*/ 1e-5f,
+ /*n_tokens =*/ n_tokens,
+ }) {
+ }
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1);
+
+ ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
+ ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
+
+ for (uint32_t il = 0; il < hp.n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
+ cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
+
+ // self-attention
+ {
+ ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
+ ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
+ ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
+
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
+
+ Qcur = ggml_rope_custom(
+ ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos,
+ hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ Kcur = ggml_rope_custom(
+ ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos,
+ hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
+
+ cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
+
+ // feed-forward network
+ ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
+ cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
+
+ ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
+ ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
+ ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
+ struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
+ cur = ggml_mul_mat(ctx, ffn_gate, cur);
+ cur = ggml_silu(ctx, cur);
+ cur = ggml_mul(ctx, cur, tmp);
+ cur = ggml_mul_mat(ctx, ffn_down, cur);
+
+ cur = ggml_add(ctx, cur, ffn_inp);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
+ cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
+
+ // lm_head
+ ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
+ cur = ggml_mul_mat(ctx, output, cur);
+
+ return cur;
+ }
+};
+
+// Falcon
+struct test_falcon : public test_llm {
+ static constexpr float freq_base = 10000.0f;
+ static constexpr float freq_scale = 1.0f;
+ static constexpr float ext_factor = 0.0f;
+ static constexpr float attn_factor = 1.0f;
+ static constexpr float beta_fast = 32.0f;
+ static constexpr float beta_slow = 1.0f;
+
+ std::string op_desc(ggml_tensor * t) override {
+ GGML_UNUSED(t);
+ return "FALCON";
+ }
+
+ std::string vars() override {
+ auto n_tokens = hp.n_tokens;
+ return VARS_TO_STR1(n_tokens);
+ }
+
+ double max_nmse_err() override {
+ return 2e-3;
+ }
+
+ test_falcon(int n_tokens = 1)
+ : test_llm({
+ /*n_vocab =*/ 32000,
+ /*n_embd =*/ 3200,
+ /*n_head =*/ 50,
+ /*n_head_kv =*/ 1,
+ /*n_rot =*/ 64,
+ /*n_embd_head =*/ 64,
+ /*n_ff =*/ 8640,
+ /*f_norm_eps =*/ 1e-5f,
+ /*f_norm_rms_eps =*/ 0.f,
+ /*n_tokens =*/ n_tokens,
+ }) {
+ }
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1);
+
+ ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
+ ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
+
+ for (uint32_t il = 0; il < hp.n_layer; ++il) {
+ // norm
+ ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
+ ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
+ ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
+
+ // self-attention
+ {
+ cur = attn_norm;
+
+ ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
+
+ cur = ggml_mul_mat(ctx, wqkv, cur);
+
+ struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
+ struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
+ struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
+
+ Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
+ Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
+
+ // using mode = 2 for neox mode
+ Qcur = ggml_rope_custom(
+ ctx, Qcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ Kcur = ggml_rope_custom(
+ ctx, Kcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
+
+ cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
+ }
+
+ struct ggml_tensor * ffn_inp = cur;
+
+ // feed forward
+ {
+ ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
+ ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
+ cur = attn_norm;
+ cur = ggml_mul_mat(ctx, ffn_up, cur);
+ cur = ggml_gelu(ctx, cur);
+ cur = ggml_mul_mat(ctx, ffn_down, cur);
+ }
+
+ cur = ggml_add(ctx, cur, ffn_inp);
+
+ cur = ggml_add(ctx, cur, inpL);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
+ ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
+ cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
+
+ // lm_head
+ ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
+ cur = ggml_mul_mat(ctx, output, cur);
+
+ return cur;
+ }
+};
+
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
std::vector<std::unique_ptr<test_case>> test_cases;
std::default_random_engine rng(0);
@@ -1626,6 +2029,9 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
exponent <<= 1;
}
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, 0.1f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, 0.1f, true));
+
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B
test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B
@@ -1662,6 +2068,14 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
//test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336));
#endif
+ // these tests are disabled to save execution time, but they can be handy for debugging
+#if 0
+ test_cases.emplace_back(new test_llama(1));
+ test_cases.emplace_back(new test_llama(2));
+ test_cases.emplace_back(new test_falcon(1));
+ test_cases.emplace_back(new test_falcon(2));
+#endif
+
// run tests
if (mode == MODE_TEST) {
ggml_backend_t backend_cpu = ggml_backend_cpu_init();
diff --git a/tests/test-c.c b/tests/test-c.c
index a0507108..95ba73df 100644
--- a/tests/test-c.c
+++ b/tests/test-c.c
@@ -1,3 +1,7 @@
#include "llama.h"
+#ifdef GGML_USE_KOMPUTE
+#include "ggml-kompute.h"
+#endif
+
int main(void) {}