summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--examples/quantize/quantize.cpp2
-rw-r--r--ggml/include/ggml.h4
-rw-r--r--ggml/src/ggml-common.h4
-rw-r--r--ggml/src/ggml-quants.c2
-rw-r--r--ggml/src/ggml.c30
-rw-r--r--ggml/src/iqk/iqk_mul_mat.cpp50
-rw-r--r--ggml/src/iqk/iqk_quantize.cpp30
-rw-r--r--ggml/src/iqk/iqk_quantize.h14
-rw-r--r--include/llama.h2
-rw-r--r--src/llama.cpp20
10 files changed, 79 insertions, 79 deletions
diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp
index 89fb8464..24e5a61b 100644
--- a/examples/quantize/quantize.cpp
+++ b/examples/quantize/quantize.cpp
@@ -41,7 +41,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
- { "IQ4_NL_X4",LLAMA_FTYPE_MOSTLY_IQ4_NL_X4," 4.50 bpw non-linear quantization", },
+ { "IQ4_NL_R4",LLAMA_FTYPE_MOSTLY_IQ4_NL_R4," 4.50 bpw non-linear quantization", },
{ "IQ4_XS_R4",LLAMA_FTYPE_MOSTLY_IQ4_XS_R4," 4.25 bpw non-linear quantization", },
{ "Q4_0_R4", LLAMA_FTYPE_MOSTLY_Q4_0_R4, " 4.50 bpw quantization", },
{ "Q5_0_R4", LLAMA_FTYPE_MOSTLY_Q5_0_R4, " 5.50 bpw quantization", },
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
index 962e9688..e17540e9 100644
--- a/ggml/include/ggml.h
+++ b/ggml/include/ggml.h
@@ -411,7 +411,7 @@ extern "C" {
GGML_TYPE_Q4_0_R4 = 202,
GGML_TYPE_Q5_0_R4 = 206,
GGML_TYPE_Q8_0_R4 = 208,
- GGML_TYPE_IQ4_NL_X4 = 220, // TODO: rename GGML_TYPE_IQ4_NL_X4 to GGML_TYPE_IQ4_NL_R4
+ GGML_TYPE_IQ4_NL_R4 = 220,
GGML_TYPE_IQ4_XS_R4 = 223,
GGML_TYPE_Q6_0_R4 = 233,
GGML_TYPE_IQ2_BN_R4 = 335,
@@ -477,7 +477,7 @@ extern "C" {
GGML_FTYPE_MOSTLY_Q4_0_R4 = 202, // except 1d tensors
GGML_FTYPE_MOSTLY_Q8_0_R4 = 207, // except 1d tensors
GGML_FTYPE_MOSTLY_Q5_0_R4 = 208, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ4_NL_X4 = 219, // except 1d tensors
+ GGML_FTYPE_MOSTLY_IQ4_NL_R4 = 219, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ4_XS_R4 = 222, // except 1d tensors
GGML_FTYPE_MOSTLY_Q6_0_R4 = 227, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ2_BN_R4 = 329, // except 1d tensors
diff --git a/ggml/src/ggml-common.h b/ggml/src/ggml-common.h
index aa41bf55..3f701873 100644
--- a/ggml/src/ggml-common.h
+++ b/ggml/src/ggml-common.h
@@ -436,8 +436,8 @@ static_assert(sizeof(block_iq4_nl) == sizeof(ggml_half) + QK4_NL/2, "wrong iq4_n
typedef struct {
ggml_half d[4];
uint8_t qs[2*QK4_NL];
-} block_iq4_nl_x4;
-static_assert(sizeof(block_iq4_nl_x4) == 4*sizeof(ggml_half) + 2*QK4_NL, "wrong iq4_nl_x4 block size/padding");
+} block_iq4_nl_r4;
+static_assert(sizeof(block_iq4_nl_r4) == 4*sizeof(ggml_half) + 2*QK4_NL, "wrong iq4_nl_x4 block size/padding");
typedef struct {
ggml_half d;
diff --git a/ggml/src/ggml-quants.c b/ggml/src/ggml-quants.c
index a9511f00..7eece2b3 100644
--- a/ggml/src/ggml-quants.c
+++ b/ggml/src/ggml-quants.c
@@ -15196,7 +15196,7 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte
case GGML_TYPE_IQ6_K: break;
case GGML_TYPE_IQ4_KS: break;
case GGML_TYPE_IQ4_KSS: break;
- case GGML_TYPE_IQ4_NL_X4: break;
+ case GGML_TYPE_IQ4_NL_R4: break;
case GGML_TYPE_IQ4_XS_R4: break;
case GGML_TYPE_Q4_0_R4: break;
case GGML_TYPE_Q5_0_R4: break;
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index 12afec05..69bb6d88 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -1266,15 +1266,15 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.nrows = 1,
.row_meta_size = 0,
},
- [GGML_TYPE_IQ4_NL_X4] = {
- .type_name = "iq4_nl_x4",
+ [GGML_TYPE_IQ4_NL_R4] = {
+ .type_name = "iq4_nl_r4",
.blck_size = QK4_NL,
.type_size = sizeof(block_iq4_nl),
.is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq4_nl_x4,
- .from_float = quantize_row_iq4_nl_x4,
- .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_x4_ref,
- .vec_dot = vec_dot_iq4_nl_x4_q8_0,
+ .to_float = (ggml_to_float_t) dequantize_row_iq4_nl_r4,
+ .from_float = quantize_row_iq4_nl_r4,
+ .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_r4_ref,
+ .vec_dot = vec_dot_iq4_nl_r4_q8_0,
#if GGML_USE_IQK_MULMAT && defined __AVX2__
.vec_dot_type = GGML_TYPE_Q8_1,
#else
@@ -4023,7 +4023,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
case GGML_FTYPE_MOSTLY_IQ2_BN: wtype = GGML_TYPE_IQ2_BN; break;
case GGML_FTYPE_MOSTLY_IQ2_BN_R4: wtype = GGML_TYPE_IQ2_BN_R4;break;
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
- case GGML_FTYPE_MOSTLY_IQ4_NL_X4: wtype = GGML_TYPE_IQ4_NL_X4;break;
+ case GGML_FTYPE_MOSTLY_IQ4_NL_R4: wtype = GGML_TYPE_IQ4_NL_R4;break;
case GGML_FTYPE_MOSTLY_IQ4_XS_R4: wtype = GGML_TYPE_IQ4_XS_R4;break;
case GGML_FTYPE_MOSTLY_Q4_0_R4: wtype = GGML_TYPE_Q4_0_R4; break;
case GGML_FTYPE_MOSTLY_Q5_0_R4: wtype = GGML_TYPE_Q5_0_R4; break;
@@ -10553,7 +10553,7 @@ static void ggml_compute_forward_add(
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ2_BN_R4:
case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_NL_X4:
+ case GGML_TYPE_IQ4_NL_R4:
case GGML_TYPE_IQ4_XS_R4:
case GGML_TYPE_Q4_0_R4:
case GGML_TYPE_Q5_0_R4:
@@ -11002,7 +11002,7 @@ static void ggml_compute_forward_add1(
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ2_BN_R4:
case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_NL_X4:
+ case GGML_TYPE_IQ4_NL_R4:
case GGML_TYPE_IQ4_XS_R4:
case GGML_TYPE_Q4_0_R4:
case GGML_TYPE_Q5_0_R4:
@@ -11148,7 +11148,7 @@ static void ggml_compute_forward_acc(
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ2_BN_R4:
case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_NL_X4:
+ case GGML_TYPE_IQ4_NL_R4:
case GGML_TYPE_IQ4_XS_R4:
case GGML_TYPE_Q4_0_R4:
case GGML_TYPE_Q5_0_R4:
@@ -14340,7 +14340,7 @@ static void ggml_compute_forward_out_prod(
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ2_BN_R4:
case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_NL_X4:
+ case GGML_TYPE_IQ4_NL_R4:
case GGML_TYPE_IQ4_XS_R4:
case GGML_TYPE_Q4_0_R4:
case GGML_TYPE_Q5_0_R4:
@@ -14726,7 +14726,7 @@ static void ggml_compute_forward_set(
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ2_BN_R4:
case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_NL_X4:
+ case GGML_TYPE_IQ4_NL_R4:
case GGML_TYPE_IQ4_XS_R4:
case GGML_TYPE_Q4_0_R4:
case GGML_TYPE_Q5_0_R4:
@@ -15006,7 +15006,7 @@ static void ggml_compute_forward_get_rows(
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ2_BN_R4:
case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_NL_X4:
+ case GGML_TYPE_IQ4_NL_R4:
case GGML_TYPE_IQ4_XS_R4:
case GGML_TYPE_Q4_0_R4:
case GGML_TYPE_Q5_0_R4:
@@ -15613,7 +15613,7 @@ static void ggml_compute_forward_clamp(
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ2_BN_R4:
case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_NL_X4:
+ case GGML_TYPE_IQ4_NL_R4:
case GGML_TYPE_IQ4_XS_R4:
case GGML_TYPE_Q4_0_R4:
case GGML_TYPE_Q5_0_R4:
@@ -22449,7 +22449,7 @@ size_t ggml_quantize_chunk(
case GGML_TYPE_IQ2_BN: result = quantize_iq2_bn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ2_BN_R4:result = quantize_iq2_bn_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ4_NL_X4: result = quantize_iq4_nl_x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ4_NL_R4: result = quantize_iq4_nl_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_XS_R4: result = quantize_iq4_xs_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q4_0_R4: result = quantize_q4_0_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q5_0_R4: result = quantize_q5_0_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
diff --git a/ggml/src/iqk/iqk_mul_mat.cpp b/ggml/src/iqk/iqk_mul_mat.cpp
index ba6ad15d..69c0b9a4 100644
--- a/ggml/src/iqk/iqk_mul_mat.cpp
+++ b/ggml/src/iqk/iqk_mul_mat.cpp
@@ -167,7 +167,7 @@ struct MulMat {
case GGML_TYPE_Q5_0_R4:
case GGML_TYPE_Q6_0_R4:
case GGML_TYPE_Q8_0_R4:
- case GGML_TYPE_IQ4_NL_X4:
+ case GGML_TYPE_IQ4_NL_R4:
case GGML_TYPE_IQ2_BN_R4: return 4;
default: return 1;
}
@@ -2340,7 +2340,7 @@ static void mul_mat_iq2_bn_r4_q8_k16(int n, const void * vx, size_t bx, const Da
#ifdef HAVE_FANCY_SIMD
template <int nrc_y>
-static void mul_mat_iq4_nl_x4_q8_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
+static void mul_mat_iq4_nl_r4_q8_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
GGML_ASSERT(nrc_x%8 == 0);
Q8<nrc_y, block_q8_1_x4> q8(info);
auto m4 = _mm512_set1_epi8(0xf);
@@ -2350,8 +2350,8 @@ static void mul_mat_iq4_nl_x4_q8_1(int n, const void * vx, size_t bx, const Data
__m512 acc[2*nrc_y] = {};
__m512i qx[4];
for (int ix = 0; ix < nrc_x; ix += 8) {
- const block_iq4_nl_x4 * iq4l = (const block_iq4_nl_x4 *)((const char *)vx + (ix+0)*bx);
- const block_iq4_nl_x4 * iq4h = (const block_iq4_nl_x4 *)((const char *)vx + (ix+4)*bx);
+ const block_iq4_nl_r4 * iq4l = (const block_iq4_nl_r4 *)((const char *)vx + (ix+0)*bx);
+ const block_iq4_nl_r4 * iq4h = (const block_iq4_nl_r4 *)((const char *)vx + (ix+4)*bx);
for (int ib4 = 0; ib4 < nb/4; ++ib4) {
for (int k = 0; k < 4; ++k) {
auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq4l[4*ib4+k].d));
@@ -2394,7 +2394,7 @@ static void mul_mat_iq4_nl_x4_q8_1(int n, const void * vx, size_t bx, const Data
}
#else
template <int nrc_y>
-static void mul_mat_iq4_nl_x4_q8_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
+static void mul_mat_iq4_nl_r4_q8_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
GGML_ASSERT(nrc_x%4 == 0);
Q8<nrc_y, block_q8_1_x4> q8(info);
auto m4 = _mm256_set1_epi8(0xf);
@@ -2405,7 +2405,7 @@ static void mul_mat_iq4_nl_x4_q8_1(int n, const void * vx, size_t bx, const Data
__m256 acc[nrc_y] = {};
//__m256 acc[2*nrc_y] = {};
for (int ix = 0; ix < nrc_x; ix += 4) {
- const block_iq4_nl_x4 * iq4 = (const block_iq4_nl_x4 *)((const char *)vx + ix*bx);
+ const block_iq4_nl_r4 * iq4 = (const block_iq4_nl_r4 *)((const char *)vx + ix*bx);
for (int ib4 = 0; ib4 < nb/4; ++ib4) {
for (int k = 0; k < 4; ++k) {
auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq4[4*ib4+k].d));
@@ -2455,8 +2455,8 @@ static void mul_mat_q4_0_r4_q8_1(int n, const void * vx, size_t bx, const DataIn
__m512 acc[2*nrc_y] = {};
__m512i qx[4];
for (int ix = 0; ix < nrc_x; ix += 8) {
- const block_iq4_nl_x4 * iq4l = (const block_iq4_nl_x4 *)((const char *)vx + (ix+0)*bx);
- const block_iq4_nl_x4 * iq4h = (const block_iq4_nl_x4 *)((const char *)vx + (ix+4)*bx);
+ const block_iq4_nl_r4 * iq4l = (const block_iq4_nl_r4 *)((const char *)vx + (ix+0)*bx);
+ const block_iq4_nl_r4 * iq4h = (const block_iq4_nl_r4 *)((const char *)vx + (ix+4)*bx);
for (int ib4 = 0; ib4 < nb/4; ++ib4) {
for (int k = 0; k < 4; ++k) {
auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq4l[4*ib4+k].d));
@@ -2508,7 +2508,7 @@ static void mul_mat_q4_0_r4_q8_1(int n, const void * vx, size_t bx, const DataIn
GGML_ASSERT(nb%4 == 0);
__m256 acc[nrc_y] = {};
for (int ix = 0; ix < nrc_x; ix += 4) {
- const block_iq4_nl_x4 * iq4 = (const block_iq4_nl_x4 *)((const char *)vx + ix*bx);
+ const block_iq4_nl_r4 * iq4 = (const block_iq4_nl_r4 *)((const char *)vx + ix*bx);
for (int ib4 = 0; ib4 < nb/4; ++ib4) {
for (int k = 0; k < 4; ++k) {
auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq4[4*ib4+k].d));
@@ -5052,16 +5052,16 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) {
MulMat::set_functions<IQ4_NL_Unpacker>(mm);
expected_typeB = GGML_TYPE_Q8_1;
break;
- case GGML_TYPE_IQ4_NL_X4:
+ case GGML_TYPE_IQ4_NL_R4:
assert (ne00 % QK4_NL == 0);
- mm.funcs[0] = mul_mat_iq4_nl_x4_q8_1<1>;
- mm.funcs[1] = mul_mat_iq4_nl_x4_q8_1<2>;
- mm.funcs[2] = mul_mat_iq4_nl_x4_q8_1<3>;
- mm.funcs[3] = mul_mat_iq4_nl_x4_q8_1<4>;
- mm.funcs[4] = mul_mat_iq4_nl_x4_q8_1<5>;
- mm.funcs[5] = mul_mat_iq4_nl_x4_q8_1<6>;
- mm.funcs[6] = mul_mat_iq4_nl_x4_q8_1<7>;
- mm.funcs[7] = mul_mat_iq4_nl_x4_q8_1<8>;
+ mm.funcs[0] = mul_mat_iq4_nl_r4_q8_1<1>;
+ mm.funcs[1] = mul_mat_iq4_nl_r4_q8_1<2>;
+ mm.funcs[2] = mul_mat_iq4_nl_r4_q8_1<3>;
+ mm.funcs[3] = mul_mat_iq4_nl_r4_q8_1<4>;
+ mm.funcs[4] = mul_mat_iq4_nl_r4_q8_1<5>;
+ mm.funcs[5] = mul_mat_iq4_nl_r4_q8_1<6>;
+ mm.funcs[6] = mul_mat_iq4_nl_r4_q8_1<7>;
+ mm.funcs[7] = mul_mat_iq4_nl_r4_q8_1<8>;
expected_typeB = GGML_TYPE_Q8_1;
break;
case GGML_TYPE_IQ4_XS_R4:
@@ -7734,7 +7734,7 @@ void mul_mat_iq4_xs_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& i
}
}
-void mul_mat_iq4_nl_x4_q8_0_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
+void mul_mat_iq4_nl_r4_q8_0_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
GGML_ASSERT(nrc_x%4 == 0);
Q8<1, block_q8_0_x4> q8(info);
auto m4 = vdupq_n_u8(0xf);
@@ -7744,7 +7744,7 @@ void mul_mat_iq4_nl_x4_q8_0_1(int n, const void * vx, size_t bx, const DataInfo&
int8x16_t qx[8];
for (int ix = 0; ix < nrc_x; ix += 4) {
auto acc = vdupq_n_f32(0.f);
- const block_iq4_nl_x4 * iq4 = (const block_iq4_nl_x4 *)((const char *)vx + ix*bx);
+ const block_iq4_nl_r4 * iq4 = (const block_iq4_nl_r4 *)((const char *)vx + ix*bx);
for (int ib4 = 0; ib4 < nb/4; ++ib4) {
auto y1 = vld1q_s8_x4(q8.y[0][ib4].qs);
auto y2 = vld1q_s8_x4(q8.y[0][ib4].qs+64);
@@ -7812,7 +7812,7 @@ void mul_mat_qx_r4_q8_0(int n, const void * vx, size_t bx, const DataInfo& info,
struct IQ4_NL_R4_Dequantizer {
IQ4_NL_R4_Dequantizer(const void * vx, size_t bx) : cx((const char *)vx), bx(bx), values(vld1q_s8(iq4k_values)) {}
- inline void new_row(int ix) { iq4 = (const block_iq4_nl_x4 *)(cx + ix*bx); }
+ inline void new_row(int ix) { iq4 = (const block_iq4_nl_r4 *)(cx + ix*bx); }
inline float32x4_t prepare(int ib4, int k, int8x16_t * qx) const {
auto scales = vcvt_f32_f16(vld1_f16((const float16_t *)iq4[4*ib4+k].d));
auto bits = vld1q_u8_x4(iq4[4*ib4+k].qs);
@@ -7825,14 +7825,14 @@ struct IQ4_NL_R4_Dequantizer {
const char * cx;
const size_t bx;
- const block_iq4_nl_x4 * iq4;
+ const block_iq4_nl_r4 * iq4;
const uint8x16_t m4 = vdupq_n_u8(0x0f);
const int8x16_t values;
};
struct Q4_0_R4_Dequantizer {
Q4_0_R4_Dequantizer(const void * vx, size_t bx) : cx((const char *)vx), bx(bx) {}
- inline void new_row(int ix) { iq4 = (const block_iq4_nl_x4 *)(cx + ix*bx); }
+ inline void new_row(int ix) { iq4 = (const block_iq4_nl_r4 *)(cx + ix*bx); }
inline float32x4_t prepare(int ib4, int k, int8x16_t * qx) const {
auto scales = vcvt_f32_f16(vld1_f16((const float16_t *)iq4[4*ib4+k].d));
auto bits = vld1q_u8_x4(iq4[4*ib4+k].qs);
@@ -7853,7 +7853,7 @@ struct Q4_0_R4_Dequantizer {
const char * cx;
const size_t bx;
- const block_iq4_nl_x4 * iq4;
+ const block_iq4_nl_r4 * iq4;
const uint8x16_t m4 = vdupq_n_u8(0xf0);
const uint8x16_t m88 = vdupq_n_u8(0x88);
const float32x4_t norm = vdupq_n_f32(1.f/16);
@@ -8123,7 +8123,7 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& m, int /*Ny*/) {
MulMat::set_functions<DequantizerIQ4NL>(m);
expected_Btype = GGML_TYPE_Q8_0;
break;
- case GGML_TYPE_IQ4_NL_X4:
+ case GGML_TYPE_IQ4_NL_R4:
SET_MUL_MAT_FUNCTIONS_T(m, mul_mat_qx_r4_q8_0, IQ4_NL_R4_Dequantizer);
expected_Btype = GGML_TYPE_Q8_0;
break;
diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp
index 32fe92ef..0ea608bc 100644
--- a/ggml/src/iqk/iqk_quantize.cpp
+++ b/ggml/src/iqk/iqk_quantize.cpp
@@ -3233,19 +3233,19 @@ void vec_dot_iq4_kss_q8_k(int n, float * s, size_t bs, const void * vx, size_t b
}
//
-// ========================================= iq4_nl_x4
+// ========================================= iq4_nl_r4
//
-void quantize_row_iq4_nl_x4_ref(const float * x, block_iq4_nl_x4 * y, int64_t k) {
+void quantize_row_iq4_nl_r4_ref(const float * x, block_iq4_nl_r4 * y, int64_t k) {
// we assume we are called with 4 rows
- quantize_iq4_nl_x4(x, (void *)y, 4, k/4, nullptr);
+ quantize_iq4_nl_r4(x, (void *)y, 4, k/4, nullptr);
}
-void quantize_row_iq4_nl_x4(const float * x, void * y, int64_t k) {
+void quantize_row_iq4_nl_r4(const float * x, void * y, int64_t k) {
// we assume we are called with 4 rows
- quantize_iq4_nl_x4(x, y, 4, k/4, nullptr);
+ quantize_iq4_nl_r4(x, y, 4, k/4, nullptr);
}
-static void repack_iq4_nl(int nrows, int n_per_row, const block_iq4_nl * x, block_iq4_nl_x4 * y) {
+static void repack_iq4_nl(int nrows, int n_per_row, const block_iq4_nl * x, block_iq4_nl_r4 * y) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK4_NL == 0);
int nblock = n_per_row/QK4_NL;
@@ -3266,21 +3266,21 @@ static void repack_iq4_nl(int nrows, int n_per_row, const block_iq4_nl * x, bloc
}
}
-size_t quantize_iq4_nl_x4(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) {
+size_t quantize_iq4_nl_r4(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) {
GGML_ASSERT(nrows%4 == 0);
auto row_size_nl = ggml_row_size(GGML_TYPE_IQ4_NL, n_per_row);
std::vector<char> qtmp(4*row_size_nl);
char * qrow = (char *)dst;
for (int row = 0; row < nrows; row += 4) {
quantize_iq4_nl(src, qtmp.data(), 4, n_per_row, imatrix);
- repack_iq4_nl(4, n_per_row, (const block_iq4_nl *)qtmp.data(), (block_iq4_nl_x4 *)qrow);
+ repack_iq4_nl(4, n_per_row, (const block_iq4_nl *)qtmp.data(), (block_iq4_nl_r4 *)qrow);
src += 4*n_per_row;
qrow += 4*row_size_nl;
}
return nrows*row_size_nl;
}
-void dequantize_row_iq4_nl_x4(const block_iq4_nl_x4 * x, float * y, int64_t k) {
+void dequantize_row_iq4_nl_r4(const block_iq4_nl_r4 * x, float * y, int64_t k) {
// we assume we are called with 4 rows
int n_per_row = k/4;
int nb = n_per_row/QK4_NL;
@@ -3303,9 +3303,9 @@ void dequantize_row_iq4_nl_x4(const block_iq4_nl_x4 * x, float * y, int64_t k) {
}
}
-void vec_dot_iq4_nl_x4_q8_0(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) {
+void vec_dot_iq4_nl_r4_q8_0(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) {
#if GGML_USE_IQK_MULMAT
- if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ4_NL_X4, vx, 0, GGML_TYPE_Q8_0, vy, 0, s, 0, 0, 1)) {
+ if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ4_NL_R4, vx, 0, GGML_TYPE_Q8_0, vy, 0, s, 0, 0, 1)) {
return;
}
#endif
@@ -3319,7 +3319,7 @@ void vec_dot_iq4_nl_x4_q8_0(int n, float * s, size_t bs, const void * vx, size_t
//
// ========================================= q4_0_r4
//
-void quantize_row_q4_0_r4_ref(const float * x, block_iq4_nl_x4 * y, int64_t k) {
+void quantize_row_q4_0_r4_ref(const float * x, block_iq4_nl_r4 * y, int64_t k) {
// we assume we are called with 4 rows
quantize_q4_0_r4(x, (void *)y, 4, k/4, nullptr);
}
@@ -3329,7 +3329,7 @@ void quantize_row_q4_0_r4(const float * x, void * y, int64_t k) {
quantize_q4_0_r4(x, y, 4, k/4, nullptr);
}
-static void repack_q4_0(int nrows, int n_per_row, const block_q4_0 * x, block_iq4_nl_x4 * y) {
+static void repack_q4_0(int nrows, int n_per_row, const block_q4_0 * x, block_iq4_nl_r4 * y) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK4_NL == 0);
int nblock = n_per_row/QK4_NL;
@@ -3369,14 +3369,14 @@ size_t quantize_q4_0_r4(const float * src, void * dst, int64_t nrows, int64_t n_
char * qrow = (char *)dst;
for (int row = 0; row < nrows; row += 4) {
quantize_q4_0(src, qtmp.data(), 4, n_per_row, imatrix);
- repack_iq4_nl(4, n_per_row, (const block_iq4_nl *)qtmp.data(), (block_iq4_nl_x4 *)qrow);
+ repack_iq4_nl(4, n_per_row, (const block_iq4_nl *)qtmp.data(), (block_iq4_nl_r4 *)qrow);
src += 4*n_per_row;
qrow += 4*row_size_nl;
}
return nrows*row_size_nl;
}
-void dequantize_row_q4_0_r4(const block_iq4_nl_x4 * x, float * y, int64_t k) {
+void dequantize_row_q4_0_r4(const block_iq4_nl_r4 * x, float * y, int64_t k) {
// we assume we are called with 4 rows
int n_per_row = k/4;
int nb = n_per_row/QK4_0;
diff --git a/ggml/src/iqk/iqk_quantize.h b/ggml/src/iqk/iqk_quantize.h
index fb436e57..f5bbd3dc 100644
--- a/ggml/src/iqk/iqk_quantize.h
+++ b/ggml/src/iqk/iqk_quantize.h
@@ -63,16 +63,16 @@ void vec_dot_iq2_ks_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void
void iqk_quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
-void quantize_row_iq4_nl_x4_ref(const float * GGML_RESTRICT x, block_iq4_nl_x4 * GGML_RESTRICT y, int64_t k);
-void quantize_row_iq4_nl_x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
-size_t quantize_iq4_nl_x4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
-void dequantize_row_iq4_nl_x4(const block_iq4_nl_x4 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
-void vec_dot_iq4_nl_x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
+void quantize_row_iq4_nl_r4_ref(const float * GGML_RESTRICT x, block_iq4_nl_r4 * GGML_RESTRICT y, int64_t k);
+void quantize_row_iq4_nl_r4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
+size_t quantize_iq4_nl_r4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
+void dequantize_row_iq4_nl_r4(const block_iq4_nl_r4 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
+void vec_dot_iq4_nl_r4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
-void quantize_row_q4_0_r4_ref(const float * GGML_RESTRICT x, block_iq4_nl_x4 * GGML_RESTRICT y, int64_t k);
+void quantize_row_q4_0_r4_ref(const float * GGML_RESTRICT x, block_iq4_nl_r4 * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_0_r4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
size_t quantize_q4_0_r4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
-void dequantize_row_q4_0_r4(const block_iq4_nl_x4 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
+void dequantize_row_q4_0_r4(const block_iq4_nl_r4 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void vec_dot_q4_0_r4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void quantize_row_q8_0_r4_ref(const float * GGML_RESTRICT x, block_q8_0_x4 * GGML_RESTRICT y, int64_t k);
diff --git a/include/llama.h b/include/llama.h
index 243fddaa..9eec6a43 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -183,7 +183,7 @@ extern "C" {
LLAMA_FTYPE_MOSTLY_Q4_0_R4 = 202, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q8_0_R4 = 207, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0_R4 = 208, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_IQ4_NL_X4 = 225, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ4_NL_R4 = 225, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ4_XS_R4 = 230, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q6_0_R4 = 235, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ2_BN_R4 = 237, // except 1d tensors
diff --git a/src/llama.cpp b/src/llama.cpp
index 0e1aadbd..4b25d4ec 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -3850,7 +3850,7 @@ struct llama_model_loader {
case GGML_TYPE_IQ2_BN: ftype = LLAMA_FTYPE_MOSTLY_IQ2_BN; break;
case GGML_TYPE_IQ2_BN_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ2_BN_R4;break;
case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
- case GGML_TYPE_IQ4_NL_X4:ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL_X4;break;
+ case GGML_TYPE_IQ4_NL_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL_R4;break;
case GGML_TYPE_IQ4_XS_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS_R4;break;
case GGML_TYPE_Q4_0_R4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_R4; break;
case GGML_TYPE_Q5_0_R4: ftype = LLAMA_FTYPE_MOSTLY_Q5_0_R4; break;
@@ -4560,7 +4560,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ4_NL_X4:return "IQ4_NL_X4 - 4.5 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ4_NL_R4:return "IQ4_NL_R4 - 4.5 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_XS_R4:return "IQ4_XS_R4 - 4.25 bpw";
case LLAMA_FTYPE_MOSTLY_Q4_0_R4: return "Q4_0_R4 - 4.5 bpw";
case LLAMA_FTYPE_MOSTLY_Q5_0_R4: return "Q5_0_R4 - 5.5 bpw";
@@ -15780,7 +15780,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
new_type == GGML_TYPE_Q4_0_8_8) {
new_type = GGML_TYPE_Q4_0;
}
- else if (new_type == GGML_TYPE_IQ4_NL_X4) {
+ else if (new_type == GGML_TYPE_IQ4_NL_R4) {
new_type = GGML_TYPE_IQ4_NL;
}
else if (new_type == GGML_TYPE_IQ4_XS_R4) {
@@ -15860,7 +15860,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL_X4 || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS_R4 ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS_R4 ||
ftype == LLAMA_FTYPE_MOSTLY_IQ4_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_KSS) && qs.model.hparams.n_gqa() >= 2) {
new_type = GGML_TYPE_IQ5_K;
}
@@ -15890,7 +15890,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
else if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_IQ3_S ) new_type = GGML_TYPE_Q4_K;
else if (new_type == GGML_TYPE_Q4_K || new_type == GGML_TYPE_IQ4_XS) new_type = GGML_TYPE_Q5_K;
else if (new_type == GGML_TYPE_IQ4_NL) new_type = GGML_TYPE_Q5_K;
- else if (new_type == GGML_TYPE_IQ4_NL_X4) new_type = GGML_TYPE_Q5_K;
+ else if (new_type == GGML_TYPE_IQ4_NL_R4) new_type = GGML_TYPE_Q5_K;
else if (new_type == GGML_TYPE_IQ4_XS_R4) new_type = GGML_TYPE_Q5_K;
else if (new_type == GGML_TYPE_Q5_K) new_type = GGML_TYPE_Q6_K;
}
@@ -15957,7 +15957,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
else if (i_layer < n_layer/8 && !qs.has_imatrix &&
(ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS ||
ftype == LLAMA_FTYPE_MOSTLY_IQ4_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_KSS ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL_X4 || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS_R4)) {
+ ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS_R4)) {
new_type = GGML_TYPE_Q5_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
@@ -15972,7 +15972,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_0_R4 && qs.has_imatrix && i_layer < n_layer/8) {
- new_type = GGML_TYPE_IQ4_NL_X4;
+ new_type = GGML_TYPE_IQ4_NL_R4;
}
++qs.i_ffn_down;
} else if (name.find("attn_output.weight") != std::string::npos) {
@@ -15984,7 +15984,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_K ||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_K ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL_X4 || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS_R4) {
+ ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS_R4) {
new_type = GGML_TYPE_Q5_K;
}
} else {
@@ -16194,7 +16194,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_IQ2_BN: default_type = GGML_TYPE_IQ2_BN; break;
case LLAMA_FTYPE_MOSTLY_IQ2_BN_R4:default_type = GGML_TYPE_IQ2_BN_R4;break;
case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
- case LLAMA_FTYPE_MOSTLY_IQ4_NL_X4:default_type = GGML_TYPE_IQ4_NL_X4;break;
+ case LLAMA_FTYPE_MOSTLY_IQ4_NL_R4:default_type = GGML_TYPE_IQ4_NL_R4;break;
case LLAMA_FTYPE_MOSTLY_IQ4_XS_R4:default_type = GGML_TYPE_IQ4_XS_R4;break;
case LLAMA_FTYPE_MOSTLY_Q4_0_R4: default_type = GGML_TYPE_Q4_0_R4; break;
case LLAMA_FTYPE_MOSTLY_Q5_0_R4: default_type = GGML_TYPE_Q5_0_R4; break;
@@ -16557,7 +16557,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (new_type == GGML_TYPE_Q4_0_8_8) chunk_size_multiplier = 8;
else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8) chunk_size_multiplier = 4;
}
- else if (new_type == GGML_TYPE_IQ4_NL_X4) {
+ else if (new_type == GGML_TYPE_IQ4_NL_R4) {
if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ4_NL;
else chunk_size_multiplier = 4;
}