summaryrefslogtreecommitdiff
path: root/awq-py/awq
diff options
context:
space:
mode:
Diffstat (limited to 'awq-py/awq')
-rw-r--r--awq-py/awq/apply_awq.py254
1 files changed, 254 insertions, 0 deletions
diff --git a/awq-py/awq/apply_awq.py b/awq-py/awq/apply_awq.py
new file mode 100644
index 00000000..11132c5d
--- /dev/null
+++ b/awq-py/awq/apply_awq.py
@@ -0,0 +1,254 @@
+"""
+Implements the AWQ for llama.cpp use cases.
+Original paper: https://arxiv.org/abs/2306.00978
+
+This code is based on versions of the AWQ implementation found in the following repositories:
+* https://github.com/mit-han-lab/llm-awq
+* https://github.com/casper-hansen/AutoAWQ
+"""
+
+import os
+import torch
+import torch.nn as nn
+
+from transformers import AutoModelForCausalLM, AutoConfig
+from transformers.models.bloom.modeling_bloom import BloomGelu
+from transformers.models.llama.modeling_llama import LlamaRMSNorm
+from transformers.activations import GELUActivation
+
+
+class ScaledActivation(nn.Module):
+ """
+ ScaledActivation module wraps an existing activation function and applies a
+ scale factor to its output.
+
+ Args:
+ module (nn.Module): The activation function to be scaled.
+ scales (torch.Tensor): A tensor of size (num_features,) containing the initial
+ scale factors for each feature.
+
+ Returns:
+ torch.Tensor: The scaled output of the activation function.
+ """
+
+ def __init__(self, module, scales):
+ super().__init__()
+ self.act = module
+ self.scales = nn.Parameter(scales.data)
+
+ def forward(self, x):
+ return self.act(x) / self.scales.view(1, 1, -1).to(x.device)
+
+
+def set_op_by_name(layer, name, new_module):
+ """
+ Set the new module for given module's name.
+
+ Args:
+ layer (nn.Module): The layer in which to replace the submodule.
+ name (str): The path to the submodule to be replaced, using dot notation
+ to access nested modules.
+ new_module (nn.Module): The new module to replace the existing one.
+ """
+ levels = name.split(".")
+ if len(levels) > 1:
+ mod_ = layer
+ for l_idx in range(len(levels) - 1):
+ if levels[l_idx].isdigit():
+ mod_ = mod_[int(levels[l_idx])]
+ else:
+ mod_ = getattr(mod_, levels[l_idx])
+ setattr(mod_, levels[-1], new_module)
+ else:
+ setattr(layer, name, new_module)
+
+
+def get_op_by_name(module, op_name):
+ """
+ Retrieves a submodule within a given layer based on its name.
+
+ Args:
+ module (nn.Module): The layer containing the submodule to find.
+ op_name (str): The name of the submodule.
+
+ Returns:
+ nn.Module: The requested submodule found within the given layer.
+
+ Raises:
+ ValueError: If the specified submodule cannot be found within the layer.
+ """
+ for name, m in module.named_modules():
+ if name == op_name:
+ return m
+ raise ValueError(f"Cannot find op {op_name} in module {module}")
+
+
+@torch.no_grad()
+def scale_ln_fcs(ln, fcs, scales):
+ """
+ Scales the weights of a LayerNorm and a list of fully-connected layers proportionally.
+
+ Args:
+ ln (nn.LayerNorm): The LayerNorm module to be scaled.
+ fcs (List[nn.Linear]): A list of fully-connected layers to be scaled.
+ scales (torch.Tensor): A 1D tensor of size (num_features,).
+ """
+
+ if not isinstance(fcs, list):
+ fcs = [fcs]
+
+ scales = scales.to(ln.weight.device)
+
+ ln.weight.div_(scales)
+ if hasattr(ln, "bias") and ln.bias is not None:
+ ln.bias.div_(scales)
+
+ for fc in fcs:
+ fc.weight.mul_(scales.view(1, -1))
+
+ for p in ln.parameters():
+ assert torch.isnan(p).sum() == 0
+ for fc in fcs:
+ for p in fc.parameters():
+ assert torch.isnan(p).sum() == 0
+
+
+@torch.no_grad()
+def scale_fc_fc(fc1, fc2, scales):
+ """
+ Scales the weights of two fully-connected layers in a specific pattern.
+
+ Args:
+ fc1 (nn.Linear): The first fully-connected layer to be scaled.
+ fc2 (nn.Linear): The second fully-connected layer to be scaled.
+ scales (torch.Tensor): A 1D tensor of size (num_features,).
+ """
+ assert isinstance(fc1, nn.Linear)
+ assert isinstance(fc2, nn.Linear)
+
+ scales = scales.to(fc1.weight.device)
+
+ fc1.weight[-scales.size(0):].div_(scales.view(-1, 1))
+ if fc1.bias is not None:
+ fc1.bias.div_(scales.view(-1))
+
+ fc2.weight.mul_(scales.view(1, -1))
+
+ for p in fc1.parameters():
+ assert torch.isnan(p).sum() == 0
+ for p in fc2.parameters():
+ assert torch.isnan(p).sum() == 0
+
+
+@torch.no_grad()
+def scale_gelu_fc(gelu, fc, scales):
+ """
+ Scales the weight of a GELU activation and a fully-connected layer proportionally.
+
+ Args:
+ gelu (Union[nn.GELU, BloomGelu, GELUActivation]): The GELU activation module to be scaled.
+ fc (nn.Linear): The fully-connected layer to be scaled.
+ scales (torch.Tensor): A 1D tensor of size (num_features,).
+
+ Raises:
+ TypeError: If the `gelu` module is not of type `nn.GELU`, `BloomGelu`, or `GELUActivation`.
+ TypeError: If the `fc` module is not of type `nn.Linear`.
+ """
+ assert isinstance(gelu, (nn.GELU, BloomGelu, GELUActivation))
+ assert isinstance(fc, nn.Linear)
+
+ fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))
+
+ for p in fc.parameters():
+ assert torch.isnan(p).sum() == 0
+
+
+def apply_scale(module, scales_list, input_feat_dict=None):
+ """
+ Applies different scaling strategies to layers based on their type and hierarchy within a given module.
+
+ Args:
+ module (nn.Module): The module containing the layers to be scaled.
+ scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing:
+ * prev_op_name (str): The name of the preceding operation or module,
+ relative to which the layers to be scaled are located.
+ * layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation.
+ * scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature.
+ input_feat_dict (Optional[Dict[str, torch.Tensor]]): A dictionary mapping layer names to their corresponding
+ input features (optional).
+ """
+ for prev_op_name, layer_names, scales in scales_list:
+ prev_op = get_op_by_name(module, prev_op_name)
+ layers = [get_op_by_name(module, name) for name in layer_names]
+
+ prev_op.cuda()
+ for layer in layers:
+ layer.cuda()
+ scales.cuda()
+
+ if isinstance(prev_op, nn.Linear):
+ assert len(layers) == 1
+ scale_fc_fc(prev_op, layers[0], scales)
+ elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)) or "rmsnorm" in str(prev_op.__class__).lower():
+ scale_ln_fcs(prev_op, layers, scales)
+ elif isinstance(prev_op, (nn.GELU, BloomGelu, GELUActivation)):
+ new_module = ScaledActivation(prev_op, scales)
+ set_op_by_name(module, prev_op_name, new_module)
+ scale_gelu_fc(prev_op, layers[0], scales)
+ else:
+ raise NotImplementedError(f"prev_op {type(prev_op)} not supported yet!")
+
+ # apply the scaling to input feat if given; prepare it for clipping
+ if input_feat_dict is not None:
+ for layer_name in layer_names:
+ inp = input_feat_dict[layer_name]
+ inp.div_(scales.view(1, -1).to(inp.device))
+
+ prev_op.cpu()
+ for layer in layers:
+ layer.cpu()
+ scales.cpu()
+
+
+@torch.no_grad()
+def apply_clip(module, clip_list):
+ """
+ Applies element-wise clipping to the weight of a specific layer within a given module.
+
+ Args:
+ module (nn.Module): The module containing the layer to be clipped.
+ clip_list (List[Tuple[str, torch.Tensor]]): A list of tuples containing:
+ * name (str): The name of the layer to be clipped, relative to the root of the module.
+ * max_val (torch.Tensor): A 1D or 2D tensor defining the upper bound for each element of the layer's weight.
+ """
+ for name, max_val in clip_list:
+ layer = get_op_by_name(module, name)
+ layer.cuda()
+ max_val = max_val.to(layer.weight.device)
+ org_shape = layer.weight.shape
+ layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1)
+ layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val)
+ layer.weight.data = layer.weight.data.reshape(org_shape)
+ layer.cpu()
+
+
+def add_scale_weights(model_path, scale_path, tmp_path):
+ """
+ Adds pre-computed Activation Weight Quantization (AWQ) results to a model,
+ including scaling factors and clipping bounds.
+
+ Args:
+ model_path (str): Path to the pre-trained model to be equipped with AWQ.
+ scale_path (str): Path to the AWQ scale factors (.pt file).
+ tmp_path (str): Path to the temporary directory where the equipped model will be saved.
+ """
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
+ model = AutoModelForCausalLM.from_pretrained(
+ model_path, config=config, trust_remote_code=True
+ )
+ model.eval()
+ awq_results = torch.load(str(scale_path), map_location="cpu")
+ apply_scale(model, awq_results["scale"])
+ apply_clip(model, awq_results["clip"])
+ model.save_pretrained(str(tmp_path))
+ os.system(f"cp {str(model_path)}/tokenizer* {str(tmp_path)}")