diff options
Diffstat (limited to 'common/common.h')
-rw-r--r-- | common/common.h | 68 |
1 files changed, 34 insertions, 34 deletions
diff --git a/common/common.h b/common/common.h index 214a379b..24a99d72 100644 --- a/common/common.h +++ b/common/common.h @@ -43,40 +43,40 @@ extern char const *LLAMA_BUILD_TARGET; int32_t get_num_physical_cores(); struct gpt_params { - uint32_t seed = -1; // RNG seed - - int32_t n_threads = get_num_physical_cores(); - int32_t n_threads_draft = -1; - int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) - int32_t n_threads_batch_draft = -1; - int32_t n_predict = -1; // new tokens to predict - int32_t n_ctx = 512; // context size - int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) - int32_t n_keep = 0; // number of tokens to keep from initial prompt - int32_t n_draft = 8; // number of tokens to draft during speculative decoding - int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) - int32_t n_parallel = 1; // number of parallel sequences to decode - int32_t n_sequences = 1; // number of sequences to decode - float p_accept = 0.5f; // speculative decoding accept probability - float p_split = 0.1f; // speculative decoding split probability - int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) - int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) - llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs - int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors - float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs - int32_t n_beams = 0; // if non-zero then use beam search of given width. - int32_t grp_attn_n = 1; // group-attention factor - int32_t grp_attn_w = 512; // group-attention width - int32_t n_print = -1; // print token count every n tokens (-1 = disabled) - float rope_freq_base = 0.0f; // RoPE base frequency - float rope_freq_scale = 0.0f; // RoPE frequency scaling factor - float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor - float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor - float yarn_beta_fast = 32.0f; // YaRN low correction dim - float yarn_beta_slow = 1.0f; // YaRN high correction dim - int32_t yarn_orig_ctx = 0; // YaRN original context length - int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment - // pinging @cebtenzzre + uint32_t seed = -1; // RNG seed + + int32_t n_threads = get_num_physical_cores(); + int32_t n_threads_draft = -1; + int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) + int32_t n_threads_batch_draft = -1; + int32_t n_predict = -1; // new tokens to predict + int32_t n_ctx = 512; // context size + int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) + int32_t n_keep = 0; // number of tokens to keep from initial prompt + int32_t n_draft = 8; // number of tokens to draft during speculative decoding + int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) + int32_t n_parallel = 1; // number of parallel sequences to decode + int32_t n_sequences = 1; // number of sequences to decode + float p_accept = 0.5f; // speculative decoding accept probability + float p_split = 0.1f; // speculative decoding split probability + int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) + int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) + llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs + int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors + float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs + int32_t n_beams = 0; // if non-zero then use beam search of given width. + int32_t grp_attn_n = 1; // group-attention factor + int32_t grp_attn_w = 512; // group-attention width + int32_t n_print = -1; // print token count every n tokens (-1 = disabled) + float rope_freq_base = 0.0f; // RoPE base frequency + float rope_freq_scale = 0.0f; // RoPE frequency scaling factor + float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor + float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor + float yarn_beta_fast = 32.0f; // YaRN low correction dim + float yarn_beta_slow = 1.0f; // YaRN high correction dim + int32_t yarn_orig_ctx = 0; // YaRN original context length + int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment + // pinging @cebtenzzre // // sampling parameters struct llama_sampling_params sparams; |