summaryrefslogtreecommitdiff
path: root/common/common.h
diff options
context:
space:
mode:
Diffstat (limited to 'common/common.h')
-rw-r--r--common/common.h130
1 files changed, 130 insertions, 0 deletions
diff --git a/common/common.h b/common/common.h
new file mode 100644
index 00000000..c50a6edf
--- /dev/null
+++ b/common/common.h
@@ -0,0 +1,130 @@
+// Various helper functions and utilities
+
+#pragma once
+
+#include "llama.h"
+
+#include <string>
+#include <vector>
+#include <random>
+#include <thread>
+#include <unordered_map>
+#include <tuple>
+
+//
+// CLI argument parsing
+//
+int32_t get_num_physical_cores();
+
+struct gpt_params {
+ uint32_t seed = -1; // RNG seed
+ int32_t n_threads = get_num_physical_cores();
+ int32_t n_predict = -1; // new tokens to predict
+ int32_t n_ctx = 512; // context size
+ int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
+ int32_t n_keep = 0; // number of tokens to keep from initial prompt
+ int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
+ int32_t n_gpu_layers = 0; // number of layers to store in VRAM
+ int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
+ float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
+ int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
+ float rope_freq_base = 10000.0f; // RoPE base frequency
+ float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
+
+ // sampling parameters
+ int32_t top_k = 40; // <= 0 to use vocab size
+ float top_p = 0.95f; // 1.0 = disabled
+ float tfs_z = 1.00f; // 1.0 = disabled
+ float typical_p = 1.00f; // 1.0 = disabled
+ float temp = 0.80f; // 1.0 = disabled
+ float repeat_penalty = 1.10f; // 1.0 = disabled
+ int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
+ float frequency_penalty = 0.00f; // 0.0 = disabled
+ float presence_penalty = 0.00f; // 0.0 = disabled
+ int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
+ float mirostat_tau = 5.00f; // target entropy
+ float mirostat_eta = 0.10f; // learning rate
+
+ std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
+
+ // Classifier-Free Guidance
+ // https://arxiv.org/abs/2306.17806
+ std::string cfg_negative_prompt; // string to help guidance
+ float cfg_scale = 1.f; // How strong is guidance
+
+ std::string model = "models/7B/ggml-model-f16.gguf"; // model path
+ std::string model_alias = "unknown"; // model alias
+ std::string prompt = "";
+ std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
+ std::string input_prefix = ""; // string to prefix user inputs with
+ std::string input_suffix = ""; // string to suffix user inputs with
+ std::string grammar = ""; // optional BNF-like grammar to constrain sampling
+ std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
+
+ std::string lora_adapter = ""; // lora adapter path
+ std::string lora_base = ""; // base model path for the lora adapter
+
+ bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
+ size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
+
+ bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
+ bool mul_mat_q = false; // if true, use experimental mul_mat_q kernels
+ bool memory_f16 = true; // use f16 instead of f32 for memory kv
+ bool random_prompt = false; // do not randomize prompt if none provided
+ bool use_color = false; // use color to distinguish generations and inputs
+ bool interactive = false; // interactive mode
+ bool prompt_cache_all = false; // save user input and generations to prompt cache
+ bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
+
+ bool embedding = false; // get only sentence embedding
+ bool interactive_first = false; // wait for user input immediately
+ bool multiline_input = false; // reverse the usage of `\`
+ bool simple_io = false; // improves compatibility with subprocesses and limited consoles
+
+ bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
+ bool ignore_eos = false; // ignore generated EOS tokens
+ bool instruct = false; // instruction mode (used for Alpaca models)
+ bool penalize_nl = true; // consider newlines as a repeatable token
+ bool perplexity = false; // compute perplexity over the prompt
+ bool use_mmap = true; // use mmap for faster loads
+ bool use_mlock = false; // use mlock to keep model in memory
+ bool mem_test = false; // compute maximum memory usage
+ bool numa = false; // attempt optimizations that help on some NUMA systems
+ bool export_cgraph = false; // export the computation graph
+ bool verbose_prompt = false; // print prompt tokens before generation
+};
+
+bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
+
+void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
+
+std::string gpt_random_prompt(std::mt19937 & rng);
+
+//
+// Model utils
+//
+
+std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
+struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
+
+//
+// Vocab utils
+//
+
+std::vector<llama_token> llama_tokenize(
+ struct llama_context * ctx,
+ const std::string & text,
+ bool add_bos);
+
+std::vector<llama_token> llama_tokenize_bpe(
+ struct llama_context * ctx,
+ const std::string & text,
+ bool add_bos);
+
+std::string llama_token_to_str(
+ const struct llama_context * ctx,
+ llama_token token);
+
+std::string llama_token_to_str_bpe(
+ const struct llama_context * ctx,
+ llama_token token);