diff options
Diffstat (limited to 'common/common.h')
-rw-r--r-- | common/common.h | 130 |
1 files changed, 130 insertions, 0 deletions
diff --git a/common/common.h b/common/common.h new file mode 100644 index 00000000..c50a6edf --- /dev/null +++ b/common/common.h @@ -0,0 +1,130 @@ +// Various helper functions and utilities + +#pragma once + +#include "llama.h" + +#include <string> +#include <vector> +#include <random> +#include <thread> +#include <unordered_map> +#include <tuple> + +// +// CLI argument parsing +// +int32_t get_num_physical_cores(); + +struct gpt_params { + uint32_t seed = -1; // RNG seed + int32_t n_threads = get_num_physical_cores(); + int32_t n_predict = -1; // new tokens to predict + int32_t n_ctx = 512; // context size + int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) + int32_t n_keep = 0; // number of tokens to keep from initial prompt + int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) + int32_t n_gpu_layers = 0; // number of layers to store in VRAM + int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors + float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs + int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. + float rope_freq_base = 10000.0f; // RoPE base frequency + float rope_freq_scale = 1.0f; // RoPE frequency scaling factor + + // sampling parameters + int32_t top_k = 40; // <= 0 to use vocab size + float top_p = 0.95f; // 1.0 = disabled + float tfs_z = 1.00f; // 1.0 = disabled + float typical_p = 1.00f; // 1.0 = disabled + float temp = 0.80f; // 1.0 = disabled + float repeat_penalty = 1.10f; // 1.0 = disabled + int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) + float frequency_penalty = 0.00f; // 0.0 = disabled + float presence_penalty = 0.00f; // 0.0 = disabled + int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 + float mirostat_tau = 5.00f; // target entropy + float mirostat_eta = 0.10f; // learning rate + + std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens + + // Classifier-Free Guidance + // https://arxiv.org/abs/2306.17806 + std::string cfg_negative_prompt; // string to help guidance + float cfg_scale = 1.f; // How strong is guidance + + std::string model = "models/7B/ggml-model-f16.gguf"; // model path + std::string model_alias = "unknown"; // model alias + std::string prompt = ""; + std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state + std::string input_prefix = ""; // string to prefix user inputs with + std::string input_suffix = ""; // string to suffix user inputs with + std::string grammar = ""; // optional BNF-like grammar to constrain sampling + std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted + + std::string lora_adapter = ""; // lora adapter path + std::string lora_base = ""; // base model path for the lora adapter + + bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt + size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score + + bool low_vram = false; // if true, reduce VRAM usage at the cost of performance + bool mul_mat_q = false; // if true, use experimental mul_mat_q kernels + bool memory_f16 = true; // use f16 instead of f32 for memory kv + bool random_prompt = false; // do not randomize prompt if none provided + bool use_color = false; // use color to distinguish generations and inputs + bool interactive = false; // interactive mode + bool prompt_cache_all = false; // save user input and generations to prompt cache + bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it + + bool embedding = false; // get only sentence embedding + bool interactive_first = false; // wait for user input immediately + bool multiline_input = false; // reverse the usage of `\` + bool simple_io = false; // improves compatibility with subprocesses and limited consoles + + bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix + bool ignore_eos = false; // ignore generated EOS tokens + bool instruct = false; // instruction mode (used for Alpaca models) + bool penalize_nl = true; // consider newlines as a repeatable token + bool perplexity = false; // compute perplexity over the prompt + bool use_mmap = true; // use mmap for faster loads + bool use_mlock = false; // use mlock to keep model in memory + bool mem_test = false; // compute maximum memory usage + bool numa = false; // attempt optimizations that help on some NUMA systems + bool export_cgraph = false; // export the computation graph + bool verbose_prompt = false; // print prompt tokens before generation +}; + +bool gpt_params_parse(int argc, char ** argv, gpt_params & params); + +void gpt_print_usage(int argc, char ** argv, const gpt_params & params); + +std::string gpt_random_prompt(std::mt19937 & rng); + +// +// Model utils +// + +std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params); +struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params); + +// +// Vocab utils +// + +std::vector<llama_token> llama_tokenize( + struct llama_context * ctx, + const std::string & text, + bool add_bos); + +std::vector<llama_token> llama_tokenize_bpe( + struct llama_context * ctx, + const std::string & text, + bool add_bos); + +std::string llama_token_to_str( + const struct llama_context * ctx, + llama_token token); + +std::string llama_token_to_str_bpe( + const struct llama_context * ctx, + llama_token token); |