summaryrefslogtreecommitdiff
path: root/common/sampling.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'common/sampling.cpp')
-rw-r--r--common/sampling.cpp211
1 files changed, 119 insertions, 92 deletions
diff --git a/common/sampling.cpp b/common/sampling.cpp
index 8ce41945..0b246658 100644
--- a/common/sampling.cpp
+++ b/common/sampling.cpp
@@ -1,64 +1,81 @@
#include "sampling.h"
-llama_sampling_context::~llama_sampling_context() {
- for (auto & it : sequence_contexts) {
- if (it.second.grammar != NULL) {
- llama_grammar_free(it.second.grammar);
- it.second.grammar = NULL;
+struct llama_sampling_context * llama_sampling_init(const struct gpt_params & params) {
+ struct llama_sampling_context * result = new llama_sampling_context();
+
+ result->params = params.sampling_params;
+ result->grammar = nullptr;
+
+ // if there is a grammar, parse it
+ if (!params.grammar.empty()) {
+ result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
+
+ // will be empty (default) if there are parse errors
+ if (result->parsed_grammar.rules.empty()) {
+ fprintf(stderr, "%s: failed to parse grammar\n", __func__);
+ return nullptr;
}
+
+ std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
+
+ result->grammar = llama_grammar_init(
+ grammar_rules.data(),
+ grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
}
+
+ result->prev.resize(params.n_ctx);
+
+ return result;
}
-llama_sampling_context llama_sampling_context_init(
- const struct gpt_params & params,
- llama_grammar * grammar) {
- llama_sampling_context result;
+void llama_sampling_free(struct llama_sampling_context * ctx) {
+ if (ctx->grammar != NULL) {
+ llama_grammar_free(ctx->grammar);
+ }
- result.params = params.sampling_params;
- result.grammar = grammar;
- return result;
+ delete ctx;
}
-// Note: Creates the context if it doesn't exist, so this always return something.
-llama_sampler_sequence_context & llama_sampling_get_sequence_context(
- llama_sampling_context & ctx_sampling,
- const llama_seq_id seq) {
- const auto it = ctx_sampling.sequence_contexts.find(seq);
- if (it != ctx_sampling.sequence_contexts.end()) {
- return it->second;
+void llama_sampling_reset(llama_sampling_context * ctx) {
+ if (ctx->grammar != NULL) {
+ llama_grammar_free(ctx->grammar);
}
- llama_sampler_sequence_context new_ctx = {
- 2.0f * ctx_sampling.params.mirostat_tau,
- ctx_sampling.grammar != NULL ? llama_grammar_copy(ctx_sampling.grammar) : NULL,
- };
- return ctx_sampling.sequence_contexts.insert({seq, new_ctx}).first->second;
+
+ if (!ctx->parsed_grammar.rules.empty()) {
+ std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
+
+ ctx->grammar = llama_grammar_init(
+ grammar_rules.data(),
+ grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
+ }
+
+ std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
+ ctx->cur.clear();
}
-bool llama_sampling_context_reset(
- llama_sampling_context & ctx_sampling,
- const llama_seq_id seq) {
- const auto it = ctx_sampling.sequence_contexts.find(seq);
- if (it == ctx_sampling.sequence_contexts.end()) return false;
- if (it->second.grammar != NULL) {
- llama_grammar_free(it->second.grammar);
- it->second.grammar = NULL;
+void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
+ if (dst->grammar) {
+ llama_grammar_free(dst->grammar);
+ dst->grammar = nullptr;
}
- ctx_sampling.sequence_contexts.erase(it);
- return true;
+
+ if (src->grammar) {
+ dst->grammar = llama_grammar_copy(src->grammar);
+ }
+
+ dst->prev = src->prev;
}
llama_token llama_sampling_sample(
- struct llama_context * ctx,
- struct llama_context * ctx_guidance,
- struct llama_sampling_context & ctx_sampling,
- const std::vector<llama_token> & last_tokens,
- std::vector<llama_token_data> & candidates,
- const int idx,
- llama_seq_id seq) {
- const int n_ctx = llama_n_ctx(ctx);
- const int n_vocab = llama_n_vocab(llama_get_model(ctx));
-
- const llama_sampling_params & params = ctx_sampling.params;
+ struct llama_sampling_context * ctx_sampling,
+ struct llama_context * ctx_main,
+ struct llama_context * ctx_cfg,
+ const int idx) {
+ const int n_ctx = llama_n_ctx(ctx_main);
+ const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
+
+ const llama_sampling_params & params = ctx_sampling->params;
+
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const float top_p = params.top_p;
@@ -73,41 +90,45 @@ llama_token llama_sampling_sample(
const float mirostat_eta = params.mirostat_eta;
const bool penalize_nl = params.penalize_nl;
+ auto & prev = ctx_sampling->prev;
+ auto & cur = ctx_sampling->cur;
+
llama_token id = 0;
- float * logits = llama_get_logits_ith(ctx, idx);
+ float * logits = llama_get_logits_ith(ctx_main, idx);
// Apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
- candidates.clear();
+ cur.clear();
+
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
+ cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
- llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
+ llama_token_data_array cur_p = { cur.data(), cur.size(), false };
- if (ctx_guidance) {
- llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
+ if (ctx_cfg) {
+ llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale);
}
// apply penalties
- if (!last_tokens.empty()) {
- const float nl_logit = logits[llama_token_nl(ctx)];
- const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
+ if (!prev.empty()) {
+ const float nl_logit = logits[llama_token_nl(ctx_main)];
+ const int last_n_repeat = std::min(std::min((int)prev.size(), repeat_last_n), n_ctx);
- llama_sample_repetition_penalty(ctx, &cur_p,
- last_tokens.data() + last_tokens.size() - last_n_repeat,
+ llama_sample_repetition_penalty(ctx_main, &cur_p,
+ prev.data() + prev.size() - last_n_repeat,
last_n_repeat, repeat_penalty);
- llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
- last_tokens.data() + last_tokens.size() - last_n_repeat,
+ llama_sample_frequency_and_presence_penalties(ctx_main, &cur_p,
+ prev.data() + prev.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
- if (cur_p.data[idx].id == llama_token_nl(ctx)) {
+ if (cur_p.data[idx].id == llama_token_nl(ctx_main)) {
cur_p.data[idx].logit = nl_logit;
break;
}
@@ -115,52 +136,58 @@ llama_token llama_sampling_sample(
}
}
- llama_sampler_sequence_context & ctx_seq = llama_sampling_get_sequence_context(ctx_sampling, seq);
-
- if (ctx_seq.grammar != NULL) {
- llama_sample_grammar(ctx, &cur_p, ctx_seq.grammar);
+ if (ctx_sampling->grammar != NULL) {
+ llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
}
if (temp <= 0) {
// Greedy sampling
- id = llama_sample_token_greedy(ctx, &cur_p);
+ id = llama_sample_token_greedy(ctx_main, &cur_p);
} else {
if (mirostat == 1) {
const int mirostat_m = 100;
- llama_sample_temp(ctx, &cur_p, temp);
- id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_seq.mirostat_mu);
+ llama_sample_temp(ctx_main, &cur_p, temp);
+ id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
} else if (mirostat == 2) {
- llama_sample_temp(ctx, &cur_p, temp);
- id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &ctx_seq.mirostat_mu);
+ llama_sample_temp(ctx_main, &cur_p, temp);
+ id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
} else {
// Temperature sampling
size_t min_keep = std::max(1, params.n_probs);
- llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
- llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
- llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
- llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
- llama_sample_temp(ctx, &cur_p, temp);
-
- {
- const int n_top = 10;
- LOG("top %d candidates:\n", n_top);
-
- for (int i = 0; i < n_top; i++) {
- const llama_token id = cur_p.data[i].id;
- (void)id; // To avoid a warning that id is unused when logging is disabled.
- LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
- }
- }
-
- id = llama_sample_token(ctx, &cur_p);
-
- LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
+ llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep);
+ llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
+ llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);
+ llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep);
+ llama_sample_temp (ctx_main, &cur_p, temp);
+
+ id = llama_sample_token(ctx_main, &cur_p);
+
+ //{
+ // const int n_top = 10;
+ // LOG("top %d candidates:\n", n_top);
+
+ // for (int i = 0; i < n_top; i++) {
+ // const llama_token id = cur_p.data[i].id;
+ // (void)id; // To avoid a warning that id is unused when logging is disabled.
+ // LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
+ // }
+ //}
+
+ LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
}
}
- if (ctx_seq.grammar != NULL) {
- llama_grammar_accept_token(ctx, ctx_seq.grammar, id);
- }
-
return id;
}
+
+void llama_sampling_accept(
+ struct llama_sampling_context * ctx_sampling,
+ struct llama_context * ctx_main,
+ llama_token id) {
+ ctx_sampling->prev.erase(ctx_sampling->prev.begin());
+ ctx_sampling->prev.push_back(id);
+
+ if (ctx_sampling->grammar != NULL) {
+ llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
+ }
+}