diff options
Diffstat (limited to 'common/sampling.cpp')
-rw-r--r-- | common/sampling.cpp | 79 |
1 files changed, 79 insertions, 0 deletions
diff --git a/common/sampling.cpp b/common/sampling.cpp index e67096be..823031fe 100644 --- a/common/sampling.cpp +++ b/common/sampling.cpp @@ -295,6 +295,77 @@ static llama_token llama_sampling_sample_impl( return id; } +static llama_token_data_array llama_sample_probability_distribution_impl( + struct llama_sampling_context * ctx_sampling, + struct llama_context * ctx_main, + struct llama_context * ctx_cfg, + const int idx) { + const llama_sampling_params & params = ctx_sampling->params; + + const int n_vocab = llama_n_vocab(llama_get_model(ctx_main)); + + const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n; + const float penalty_repeat = params.penalty_repeat; + const float penalty_freq = params.penalty_freq; + const float penalty_present = params.penalty_present; + const bool penalize_nl = params.penalize_nl; + + auto & prev = ctx_sampling->prev; + auto & cur = ctx_sampling->cur; + + // Get a pointer to the logits + float * logits = llama_get_logits_ith(ctx_main, idx); + + // Declare original_logits at the beginning of the function scope + std::vector<float> original_logits; + + // apply params.logit_bias map + for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { + logits[it->first] += it->second; + } + + if (ctx_cfg) { + float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx); + llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale); + } + + cur.clear(); + + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); + } + + llama_token_data_array cur_p = { cur.data(), cur.size(), false }; + + // apply penalties + const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev; + const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n); + if (penalty_tokens_used_size) { + const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))]; + + llama_sample_repetition_penalties(ctx_main, &cur_p, + penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size, + penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present); + + if (!penalize_nl) { + for (size_t idx = 0; idx < cur_p.size; idx++) { + if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) { + cur_p.data[idx].logit = nl_logit; + break; + } + } + } + } + + // apply grammar checks + if (ctx_sampling->grammar != NULL) { + llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar); + } + + llama_sample_softmax(ctx_main, &cur_p); + return cur_p; +} + llama_token llama_sampling_sample( struct llama_sampling_context * ctx_sampling, struct llama_context * ctx_main, @@ -304,6 +375,14 @@ llama_token llama_sampling_sample( return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false); } +llama_token_data_array llama_sampling_probability_distribution( + struct llama_sampling_context * ctx_sampling, + struct llama_context * ctx_main, + struct llama_context * ctx_cfg, + const int idx) { + return llama_sample_probability_distribution_impl(ctx_sampling,ctx_main, ctx_cfg, idx); +} + void llama_sampling_accept( struct llama_sampling_context * ctx_sampling, struct llama_context * ctx_main, |