summaryrefslogtreecommitdiff
path: root/common/sampling.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'common/sampling.cpp')
-rw-r--r--common/sampling.cpp166
1 files changed, 166 insertions, 0 deletions
diff --git a/common/sampling.cpp b/common/sampling.cpp
new file mode 100644
index 00000000..8ce41945
--- /dev/null
+++ b/common/sampling.cpp
@@ -0,0 +1,166 @@
+#include "sampling.h"
+
+llama_sampling_context::~llama_sampling_context() {
+ for (auto & it : sequence_contexts) {
+ if (it.second.grammar != NULL) {
+ llama_grammar_free(it.second.grammar);
+ it.second.grammar = NULL;
+ }
+ }
+}
+
+llama_sampling_context llama_sampling_context_init(
+ const struct gpt_params & params,
+ llama_grammar * grammar) {
+ llama_sampling_context result;
+
+ result.params = params.sampling_params;
+ result.grammar = grammar;
+ return result;
+}
+
+// Note: Creates the context if it doesn't exist, so this always return something.
+llama_sampler_sequence_context & llama_sampling_get_sequence_context(
+ llama_sampling_context & ctx_sampling,
+ const llama_seq_id seq) {
+ const auto it = ctx_sampling.sequence_contexts.find(seq);
+ if (it != ctx_sampling.sequence_contexts.end()) {
+ return it->second;
+ }
+ llama_sampler_sequence_context new_ctx = {
+ 2.0f * ctx_sampling.params.mirostat_tau,
+ ctx_sampling.grammar != NULL ? llama_grammar_copy(ctx_sampling.grammar) : NULL,
+ };
+ return ctx_sampling.sequence_contexts.insert({seq, new_ctx}).first->second;
+}
+
+bool llama_sampling_context_reset(
+ llama_sampling_context & ctx_sampling,
+ const llama_seq_id seq) {
+ const auto it = ctx_sampling.sequence_contexts.find(seq);
+ if (it == ctx_sampling.sequence_contexts.end()) return false;
+ if (it->second.grammar != NULL) {
+ llama_grammar_free(it->second.grammar);
+ it->second.grammar = NULL;
+ }
+ ctx_sampling.sequence_contexts.erase(it);
+ return true;
+}
+
+llama_token llama_sampling_sample(
+ struct llama_context * ctx,
+ struct llama_context * ctx_guidance,
+ struct llama_sampling_context & ctx_sampling,
+ const std::vector<llama_token> & last_tokens,
+ std::vector<llama_token_data> & candidates,
+ const int idx,
+ llama_seq_id seq) {
+ const int n_ctx = llama_n_ctx(ctx);
+ const int n_vocab = llama_n_vocab(llama_get_model(ctx));
+
+ const llama_sampling_params & params = ctx_sampling.params;
+ const float temp = params.temp;
+ const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
+ const float top_p = params.top_p;
+ const float tfs_z = params.tfs_z;
+ const float typical_p = params.typical_p;
+ const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
+ const float repeat_penalty = params.repeat_penalty;
+ const float alpha_presence = params.presence_penalty;
+ const float alpha_frequency = params.frequency_penalty;
+ const int mirostat = params.mirostat;
+ const float mirostat_tau = params.mirostat_tau;
+ const float mirostat_eta = params.mirostat_eta;
+ const bool penalize_nl = params.penalize_nl;
+
+ llama_token id = 0;
+
+ float * logits = llama_get_logits_ith(ctx, idx);
+
+ // Apply params.logit_bias map
+ for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
+ logits[it->first] += it->second;
+ }
+
+ candidates.clear();
+ for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
+ candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
+ }
+
+ llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
+
+ if (ctx_guidance) {
+ llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
+ }
+
+ // apply penalties
+ if (!last_tokens.empty()) {
+ const float nl_logit = logits[llama_token_nl(ctx)];
+ const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
+
+ llama_sample_repetition_penalty(ctx, &cur_p,
+ last_tokens.data() + last_tokens.size() - last_n_repeat,
+ last_n_repeat, repeat_penalty);
+ llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
+ last_tokens.data() + last_tokens.size() - last_n_repeat,
+ last_n_repeat, alpha_frequency, alpha_presence);
+
+ if (!penalize_nl) {
+ for (size_t idx = 0; idx < cur_p.size; idx++) {
+ if (cur_p.data[idx].id == llama_token_nl(ctx)) {
+ cur_p.data[idx].logit = nl_logit;
+ break;
+ }
+ }
+ }
+ }
+
+ llama_sampler_sequence_context & ctx_seq = llama_sampling_get_sequence_context(ctx_sampling, seq);
+
+ if (ctx_seq.grammar != NULL) {
+ llama_sample_grammar(ctx, &cur_p, ctx_seq.grammar);
+ }
+
+ if (temp <= 0) {
+ // Greedy sampling
+ id = llama_sample_token_greedy(ctx, &cur_p);
+ } else {
+ if (mirostat == 1) {
+ const int mirostat_m = 100;
+ llama_sample_temp(ctx, &cur_p, temp);
+ id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_seq.mirostat_mu);
+ } else if (mirostat == 2) {
+ llama_sample_temp(ctx, &cur_p, temp);
+ id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &ctx_seq.mirostat_mu);
+ } else {
+ // Temperature sampling
+ size_t min_keep = std::max(1, params.n_probs);
+ llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
+ llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
+ llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
+ llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
+ llama_sample_temp(ctx, &cur_p, temp);
+
+ {
+ const int n_top = 10;
+ LOG("top %d candidates:\n", n_top);
+
+ for (int i = 0; i < n_top; i++) {
+ const llama_token id = cur_p.data[i].id;
+ (void)id; // To avoid a warning that id is unused when logging is disabled.
+ LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
+ }
+ }
+
+ id = llama_sample_token(ctx, &cur_p);
+
+ LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
+ }
+ }
+
+ if (ctx_seq.grammar != NULL) {
+ llama_grammar_accept_token(ctx, ctx_seq.grammar, id);
+ }
+
+ return id;
+}