diff options
Diffstat (limited to 'common/train.cpp')
-rw-r--r-- | common/train.cpp | 1496 |
1 files changed, 1496 insertions, 0 deletions
diff --git a/common/train.cpp b/common/train.cpp new file mode 100644 index 00000000..4a128096 --- /dev/null +++ b/common/train.cpp @@ -0,0 +1,1496 @@ +#include "train.h" +#include "common.h" + +#include <random> +#include <sstream> +#include <functional> + +struct random_normal_distribution { + std::mt19937 gen; + std::normal_distribution<float> rd; + float min; + float max; +}; + +struct random_uniform_distribution { + std::mt19937 gen; + std::uniform_real_distribution<float> rd; +}; + +struct train_state * init_train_state() { + struct train_state * state = new struct train_state; + state->train_its = 0; + state->train_samples = 0; + state->train_tokens = 0; + state->train_epochs = 0; + state->shuffle_samples_hash = 0; + state->shuffle_sample_count = 0; + state->shuffle_next_sample = 0; + state->shuffle_rng_state_current = ""; + state->shuffle_rng_state_next = ""; + + state->opt = new struct ggml_opt_context; + state->opt->ctx = NULL; + state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM); + state->opt->loss_after = 0.0f; + + return state; +} + +void free_train_state(struct train_state * state) { + delete state->opt; + delete state; +} + +struct random_normal_distribution * init_random_normal_distribution( + int seed, float mean, float std, float min, float max +) { + struct random_normal_distribution * rnd = (struct random_normal_distribution *) malloc(sizeof(struct random_normal_distribution)); + rnd->gen = std::mt19937(seed); + rnd->rd = std::normal_distribution<float>{mean, std}; + rnd->min = min; + rnd->max = max; + return rnd; +} + +struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max) { + struct random_uniform_distribution * rnd = (struct random_uniform_distribution *) malloc(sizeof(struct random_uniform_distribution)); + rnd->gen = std::mt19937(seed); + rnd->rd = std::uniform_real_distribution<float>{min, max}; + return rnd; +} + +void free_random_normal_distribution (struct random_normal_distribution * rnd) { + free(rnd); +} + +void free_random_uniform_distribution(struct random_uniform_distribution * rnd) { + free(rnd); +} + +struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) { + float scale = 1.0f; // xavier + switch (tensor->n_dims) { + case 1: + scale /= sqrtf((float) tensor->ne[0]); + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); + *dst = scale * frand_normal(rnd); + } + break; + case 2: + scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); + *dst = scale * frand_normal(rnd); + } + } + break; + case 3: + scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); + *dst = scale * frand_normal(rnd); + } + } + } + break; + case 4: + scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); + for (int i3 = 0; i3 < tensor->ne[3]; i3++) { + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); + *dst = scale * frand_normal(rnd); + } + } + } + } + break; + default: + die("Unsupported tensor->n_dims"); + }; + return tensor; +} + +struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) { + switch (tensor->n_dims) { + case 1: + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); + *dst = frand_uniform(rnd); + } + break; + case 2: + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); + *dst = frand_uniform(rnd); + } + } + break; + case 3: + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); + *dst = frand_uniform(rnd); + } + } + } + break; + case 4: + for (int i3 = 0; i3 < tensor->ne[3]; i3++) { + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); + *dst = frand_uniform(rnd); + } + } + } + } + break; + default: + die("Unsupported tensor->n_dims"); + }; + return tensor; +} + +float frand() { + return (float)rand()/((float)(RAND_MAX) + 1.0f); +} + +float frand_normal(struct random_normal_distribution * rnd) { + return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max); +} + +float frand_uniform(struct random_uniform_distribution * rnd) { + return rnd->rd(rnd->gen); +} + +int clamp(const int v, const int min, const int max) { + return ((v < min) ? (min) : (v > max) ? (max) : v); +} + +float fclamp(const float v, const float min, const float max) { + return ((v < min) ? (min) : (v > max) ? (max) : v); +} + +void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { + GGML_ASSERT(tensor->n_dims == 1); + GGML_ASSERT(tensor->ne[0] == ne0); +} + +void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { + GGML_ASSERT(tensor->n_dims == 2); + GGML_ASSERT(tensor->ne[0] == ne0); + GGML_ASSERT(tensor->ne[1] == ne1); +} + +void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { + GGML_ASSERT(tensor->n_dims == 3); + GGML_ASSERT(tensor->ne[0] == ne0); + GGML_ASSERT(tensor->ne[1] == ne1); + GGML_ASSERT(tensor->ne[2] == ne2); +} + +void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { + GGML_ASSERT(tensor->n_dims == 4); + GGML_ASSERT(tensor->ne[0] == ne0); + GGML_ASSERT(tensor->ne[1] == ne1); + GGML_ASSERT(tensor->ne[2] == ne2); + GGML_ASSERT(tensor->ne[3] == ne3); +} + +int64_t get_example_targets_batch( + struct llama_context * lctx, + struct ggml_tensor * tokens_input, + struct ggml_tensor * target_probs, + int64_t example_id, + const size_t * samples_offs, + const size_t * samples_begin, + const size_t * samples_size, + size_t samples_count, + const llama_token * train_data, + size_t n_train_data, + bool separate_with_eos, + bool separate_with_bos, + bool fill_with_next_samples, + bool sample_random_offsets +) { + GGML_ASSERT(samples_count > 0); + GGML_ASSERT(tokens_input->n_dims == 2); + GGML_ASSERT(target_probs->n_dims == 3); + int64_t n_vocab = target_probs->ne[0]; + int64_t n_tokens = tokens_input->ne[0]; + int64_t n_batch = tokens_input->ne[1]; + GGML_ASSERT(n_vocab == target_probs->ne[0]); + GGML_ASSERT(n_tokens == target_probs->ne[1]); + GGML_ASSERT(n_batch == target_probs->ne[2]); + + int64_t used_samples = 0; + + ggml_set_f32(target_probs, 0.0f); + llama_token bos = llama_token_bos(lctx); + llama_token eos = llama_token_eos(lctx); + // printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples); + for (int k=0; k<n_batch; ++k) { + // printf("%s: batch %d\n", __func__, k); + size_t sample_idx = (example_id + used_samples) % samples_count; + size_t sample_offs = sample_random_offsets ? samples_offs[sample_idx] : 0; + size_t sample_begin = samples_begin[sample_idx]; + size_t sample_size = samples_size[sample_idx]; + ++used_samples; + + // printf("%s: sample_idx=%zu sample=%zu\n", __func__, sample_idx, sample); + GGML_ASSERT(sample_begin+sample_size-1 < n_train_data); + + ggml_set_i32_nd(tokens_input, 0, k, 0, 0, bos); + bool sample_separation_eos = !separate_with_eos; + bool sample_separation_bos = !separate_with_bos; + for (int64_t i=0; i<n_tokens; ++i) { + llama_token token = eos; + if (sample_offs >= sample_size && fill_with_next_samples) { + if (!sample_separation_eos) { + // insert eos token to separate samples + sample_separation_eos = true; + } else if (!sample_separation_bos) { + // insert bos token to separate samples + sample_separation_bos = true; + token = bos; + } else { + // sample separation is done, continue with next sample + sample_separation_eos = !separate_with_eos; + sample_separation_bos = !separate_with_bos; + sample_offs = 0; + sample_idx = (example_id + used_samples) % samples_count; + sample_begin = samples_begin[sample_idx]; + sample_size = samples_size[sample_idx]; + ++used_samples; + } + } + // note: no else-if here + if (sample_offs < sample_size) { + token = clamp(train_data[sample_begin+sample_offs], 0, (llama_token) (n_vocab - 1)); + ++sample_offs; + } + ggml_set_f32_nd(target_probs, token, (int) i, (int) k, 0, +1.0f); + if (i+1<n_tokens) { + ggml_set_i32_nd(tokens_input, (int) (i + 1), (int) k, 0, 0, token); + } + } + } + + return used_samples; +} + +void mt19937_set_state(std::mt19937& rng, const std::string& rng_state) { + std::stringstream s_rng_state; + s_rng_state.imbue(std::locale::classic()); + s_rng_state.exceptions(std::stringstream::failbit); + s_rng_state.str(rng_state); + s_rng_state >> rng; +} + +std::string mt19937_get_state(const std::mt19937& rng) { + std::stringstream s_rng_state; + s_rng_state.imbue(std::locale::classic()); + s_rng_state << rng; + return s_rng_state.str(); +} + +std::string mt19937_seed_to_state(unsigned seed) { + std::mt19937 rng(seed); + return mt19937_get_state(rng); +} + +std::string shuffle_samples( + const std::string & rng_state, + size_t * shuffled_offs, + size_t * shuffled_begins, + size_t * shuffled_sizes, + const size_t * begins, + const size_t * sizes, + size_t count) { + if (count == 0) return rng_state; + + std::mt19937 rng; + mt19937_set_state(rng, rng_state); + + // sort indices by random value for each index + std::vector<size_t> idcs; + { + std::vector<unsigned> rnd; + idcs.resize(count); + rnd.resize(count); + for (unsigned i=0; i<count; ++i) { + idcs[i] = i; + rnd[i] = rng(); + } + + std::sort(idcs.begin(), idcs.end(), [&rnd](size_t a, size_t b){ + // stable sort for reproducibility + return (rnd[a] == rnd[b]) ? (a < b) : (rnd[a] < rnd[b]); + }); + } + + // create random offsets + for (unsigned i=0; i<count; ++i) { + shuffled_offs[i] = (size_t) ((sizes[idcs[i]] - 1) * ((double) rng() / (double) (rng.max()-1))); + } + + // reorder begins and sizes by sorted indices + for (unsigned i=0; i<count; ++i) { + shuffled_begins[i] = begins[idcs[i]]; + } + + for (unsigned i=0; i<count; ++i) { + shuffled_sizes[i] = sizes[idcs[i]]; + } + + return mt19937_get_state(rng); +} + +size_t hash_combine(size_t h1, size_t h2) { + return h1 ^ (h2 << 1); +} + +size_t compute_samples_hash(const char* fn, const size_t* samples_begin, const size_t* samples_size, size_t sample_count) { + std::hash<std::string> h_string; + std::hash<unsigned long long> h_ull; + size_t h = h_string(std::string(fn)); + h = hash_combine(h, h_ull((unsigned long long) sample_count)); + for (size_t i=0; i< sample_count; ++i) { + h = hash_combine(h, h_ull((unsigned long long) samples_begin[i])); + h = hash_combine(h, h_ull((unsigned long long) samples_size[i])); + } + return h; +} + +std::string replace_str(const char * s, const char * needle, const char * replacement) { + std::string str = s; + size_t pos = str.find(needle); + if (pos != std::string::npos) { + str.replace(pos, strlen(needle), replacement); + } + return str; +} + +void print_duration(double fmillis) { + if (fmillis < 1000.0f) { + printf("%.1fms", (float) fmillis); + return; + } + const int64_t one_sec = 1000; + const int64_t one_min = one_sec * 60; + const int64_t one_hour = one_min * 60; + const int64_t one_day = one_hour * 24; + + int64_t millis = (int64_t) fmillis; + int64_t days = millis/one_day; + int64_t hours = (millis - days*one_day)/one_hour; + int64_t minutes = (millis - days*one_day - hours*one_hour)/one_min; + int64_t seconds = (millis - days*one_day - hours*one_hour - minutes*one_min)/one_sec; + + // to print int64_t either cast to (long long int) or use macro PRId64 from <inttypes.h> + if (days > 0) { + printf("%lldd ", (long long int) days); + } + printf("%02lld:%02lld:%02lld", (long long int) hours, (long long int) minutes, (long long int) seconds); +} + +float cosine_decay(int64_t step, int64_t decay_steps, float minimum) { + if (step > decay_steps) { + step = decay_steps; + } + const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps)); + const float decay = (1 - minimum)*cosine_decay + minimum; + return decay; +} + +float cosine_decay_restart(int64_t step, int64_t decay_steps, float minimum, float restart_step_mult) { + while (step > decay_steps) { + step -= decay_steps; + decay_steps = (int64_t) (restart_step_mult * decay_steps); + } + return cosine_decay(step, decay_steps, minimum); +} + +float learning_schedule( + int64_t step, + int64_t warmup_steps, + int64_t cos_decay_steps, + float learning_rate, + float overall_minimum, + float cos_decay_minimum, + float cos_decay_restart_step_mult, + bool enable_restart) { + + float result = + (step < warmup_steps) + ? (float) step / (float) warmup_steps + : enable_restart + ? cosine_decay_restart( + step - warmup_steps, + cos_decay_steps, + cos_decay_minimum, + cos_decay_restart_step_mult) + : cosine_decay( + step, + cos_decay_steps, + cos_decay_minimum); + + float min = overall_minimum / learning_rate; + result = min + result * (1.0f - min); + return result; +} + +static bool are_same_layout(struct ggml_tensor * a, struct ggml_tensor * b) { + GGML_ASSERT(a != NULL); + GGML_ASSERT(b != NULL); + GGML_ASSERT(a->type == b->type); + GGML_ASSERT(ggml_are_same_shape(a, b)); + GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b)); + + return true; +} + +void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) { + if (dst == NULL) { + return; + } + struct ggml_tensor * t = ggml_get_tensor(ctx, name); + GGML_ASSERT(are_same_layout(dst, t)); + memcpy(dst->data, t->data, ggml_nbytes(t)); + + if (strlen(ggml_get_name(dst)) == 0) { + ggml_set_name(dst, name); + } +} + +// gguf constants +static const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type"; +static const char * LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"; +static const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"; +static const char * LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"; +static const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"; +static const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"; +static const char * LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"; +static const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"; +static const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"; +static const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"; +static const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"; +static const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"; +static const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"; +static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"; +static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"; +static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"; +static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"; +static const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"; + +static const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"; +static const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"; +static const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"; + +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"; + +static const char * LLM_KV_TRAINING_FILE_VERSION = "training.file_version"; +static const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"; +static const char * LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"; +static const char * LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"; +static const char * LLM_KV_TRAINING_EPOCH_COUNT = "training.epoch_count"; +static const char * LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH = "training.shuffle.samples_hash"; +static const char * LLM_KV_TRAINING_SHUFFLE_RNG_STATE = "training.shuffle.rng_state"; +static const char * LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT = "training.shuffle.sample_count"; +static const char * LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE = "training.shuffle.next_sample"; + +#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \ +{ \ + const std::string skey(key); \ + const int kid = gguf_find_key(ctx, skey.c_str()); \ + if (kid >= 0) { \ + enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \ + if (ktype != (type)) { \ + die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \ + } \ + (dst) = func(ctx, kid); \ + } else if (req) { \ + die_fmt("key not found in model: %s", skey.c_str()); \ + } \ +} + +void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) { + // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read + + uint32_t file_version; + GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION); + GGML_ASSERT(file_version == 0); + + GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT); + GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT); + GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED); + + uint64_t nx; + GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT); + opt->nx = (size_t) nx; + + // don't call ggml_opt_init until optimizer type and optimizer specific parameters are know + + std::string opt_type; + GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE); + if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) { + opt->params.type = GGML_OPT_ADAM; + + GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS); + GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS); + GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT); + + ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); + + copy_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); + copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); + copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); + } else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) { + opt->params.type = GGML_OPT_LBFGS; + + GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT); + GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS); + GGUF_GET_KEY(fctx, opt->lbfgs.step, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP); + GGUF_GET_KEY(fctx, opt->lbfgs.j, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J); + GGUF_GET_KEY(fctx, opt->lbfgs.k, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K); + GGUF_GET_KEY(fctx, opt->lbfgs.end, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END); + GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT); + + ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); + + copy_tensor_by_name(opt->lbfgs.x, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); + copy_tensor_by_name(opt->lbfgs.xp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); + copy_tensor_by_name(opt->lbfgs.g, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); + copy_tensor_by_name(opt->lbfgs.gp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); + copy_tensor_by_name(opt->lbfgs.d, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); + copy_tensor_by_name(opt->lbfgs.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); + copy_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); + copy_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); + copy_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); + copy_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); + } else { + die("unknown optimizer type\n"); + } +} + +void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) { + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past); + gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter); + gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized); + + switch (opt->params.type) { + case GGML_OPT_ADAM: + { + gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, opt->adam.fx_prev); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement); + + ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); + ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); + if (opt->adam.pf) { + ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); + } + + gguf_add_tensor(fctx, opt->adam.m); + gguf_add_tensor(fctx, opt->adam.v); + if (opt->adam.pf) { + gguf_add_tensor(fctx, opt->adam.pf); + } + } break; + case GGML_OPT_LBFGS: + { + gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, opt->lbfgs.fx_best); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, opt->lbfgs.step); + gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, opt->lbfgs.j); + gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, opt->lbfgs.k); + gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, opt->lbfgs.end); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement); + + ggml_set_name(opt->lbfgs.x, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); + ggml_set_name(opt->lbfgs.xp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); + ggml_set_name(opt->lbfgs.g, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); + ggml_set_name(opt->lbfgs.gp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); + ggml_set_name(opt->lbfgs.d, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); + if (opt->lbfgs.pf) { + ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); + } + ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); + ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); + ggml_set_name(opt->lbfgs.lms, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); + ggml_set_name(opt->lbfgs.lmy, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); + + gguf_add_tensor(fctx, opt->lbfgs.x); + gguf_add_tensor(fctx, opt->lbfgs.xp); + gguf_add_tensor(fctx, opt->lbfgs.g); + gguf_add_tensor(fctx, opt->lbfgs.gp); + gguf_add_tensor(fctx, opt->lbfgs.d); + if (opt->lbfgs.pf) { + gguf_add_tensor(fctx, opt->lbfgs.pf); + } + gguf_add_tensor(fctx, opt->lbfgs.lmal); + gguf_add_tensor(fctx, opt->lbfgs.lmys); + gguf_add_tensor(fctx, opt->lbfgs.lms); + gguf_add_tensor(fctx, opt->lbfgs.lmy); + } break; + } +} + +bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train) { + if (gguf_find_key(fctx, LLM_KV_TRAINING_FILE_VERSION) < 0) { + return false; + } + + uint32_t file_version; + GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION); + GGML_ASSERT(file_version <= 1); + + if (file_version == 0) { + + GGUF_GET_KEY(fctx, train->train_its, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT); + GGUF_GET_KEY(fctx, train->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT); + GGUF_GET_KEY(fctx, train->train_tokens, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT); + + } else if (file_version == 1) { + + GGUF_GET_KEY(fctx, train->train_its, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_ITERATION_COUNT); + GGUF_GET_KEY(fctx, train->train_samples, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_SAMPLE_COUNT); + GGUF_GET_KEY(fctx, train->train_tokens, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_TOKEN_COUNT); + GGUF_GET_KEY(fctx, train->train_epochs, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_EPOCH_COUNT); + + GGUF_GET_KEY(fctx, train->shuffle_samples_hash, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH); + GGUF_GET_KEY(fctx, train->shuffle_rng_state_current, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_SHUFFLE_RNG_STATE); + GGUF_GET_KEY(fctx, train->shuffle_sample_count, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT); + GGUF_GET_KEY(fctx, train->shuffle_next_sample, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE); + } + + load_opt_context_gguf(fctx, f_ggml_ctx, train->opt); + return true; +} + +void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train) { + gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION, 1); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_ITERATION_COUNT, train->train_its); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_SAMPLE_COUNT, train->train_samples); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_TOKEN_COUNT, train->train_tokens); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_EPOCH_COUNT, train->train_epochs); + + gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH, (uint64_t) train->shuffle_samples_hash); + gguf_set_val_str(fctx, LLM_KV_TRAINING_SHUFFLE_RNG_STATE, train->shuffle_rng_state_current.c_str()); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT, (uint64_t) train->shuffle_sample_count); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE, (uint64_t) train->shuffle_next_sample); + + save_opt_context_gguf(fctx, train->opt); +} + + +struct llama_file { + // use FILE * so we don't have to re-open the file to mmap + FILE * fp; + size_t size; + + llama_file(const char * fname, const char * mode) { + fp = std::fopen(fname, mode); + if (fp == NULL) { + size = 0; + } else { + seek(0, SEEK_END); + size = tell(); + seek(0, SEEK_SET); + } + } + + size_t tell() const { +#ifdef _WIN32 + __int64 ret = _ftelli64(fp); +#else + long ret = std::ftell(fp); +#endif + GGML_ASSERT(ret != -1); // this really shouldn't fail + return (size_t) ret; + } + + void seek(size_t offset, int whence) { +#ifdef _WIN32 + int ret = _fseeki64(fp, (__int64) offset, whence); +#else + int ret = std::fseek(fp, (long) offset, whence); +#endif + GGML_ASSERT(ret == 0); // same + } + + void read_raw(void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + std::size_t ret = std::fread(ptr, size, 1, fp); + if (ferror(fp)) { + die_fmt("read error: %s", strerror(errno)); + } + if (ret != 1) { + die("unexpectedly reached end of file"); + } + } + + std::uint32_t read_u32() { + std::uint32_t ret; + read_raw(&ret, sizeof(ret)); + return ret; + } + + std::string read_string(std::uint32_t len) { + std::vector<char> chars(len); + read_raw(chars.data(), len); + return std::string(chars.data(), len); + } + + void write_raw(const void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + size_t ret = std::fwrite(ptr, size, 1, fp); + if (ret != 1) { + die_fmt("write error: %s", strerror(errno)); + } + } + + void write_u32(std::uint32_t val) { + write_raw(&val, sizeof(val)); + } + + ~llama_file() { + if (fp) { + std::fclose(fp); + } + } +}; + +static size_t utf8_len(char src) { + const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; + uint8_t highbits = static_cast<uint8_t>(src) >> 4; + return lookup[highbits]; +} + +// mark each byte with its utf8 unit number. +// returns the number of utf8 characters. +// e.g. when bytes == '\x61\xD0\xB0\x62', +// then utf8_units will become [0,0,1,0] +// utf8_nunits will become [1,2,2,1] and 3 is returned. +// bytes where utf8_units is zero, are the begin of an utf8 character. +static size_t mark_utf8_units(const char* bytes, int * utf8_units, int * utf8_nunits, size_t count) { + size_t offs = 0; + size_t count_utf8 = 0; + while(offs < count) { + int len = (int) utf8_len(bytes[offs]); + for (int i=0; i<len; ++i) { + utf8_units[offs+i] = i; + utf8_nunits[offs+i] = len; + } + offs += len; + ++count_utf8; + } + return count_utf8; +} + +size_t tokenize_file( + struct llama_context * lctx, + const char * filename, + const std::string & sample_start, + bool include_sample_start, + bool overlapping_samples, + unsigned context_length, + std::vector<llama_token> & out_tokens, + std::vector<size_t> & out_samples_begin, + std::vector<size_t> & out_samples_size) { + struct llama_file f(filename, "rb"); + + if (f.size == 0) { + out_tokens.clear(); + out_samples_begin.clear(); + out_samples_size.clear(); + printf("%s: warning: empty or not existing training data file '%s'\n", + __func__, filename); + return out_tokens.size(); + } + + // account for possible leading whitespace that will be added by tokenizer + // e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12] + const int n_max_tokens_overhead = 1; + + std::vector<char> buf; + buf.resize(f.size); + + f.read_raw(buf.data(), f.size); + + std::vector<int> utf8_units; + std::vector<int> utf8_nunits; + utf8_units.resize(buf.size()); + utf8_nunits.resize(buf.size()); + mark_utf8_units(buf.data(), utf8_units.data(), utf8_nunits.data(), buf.size()); + + if (sample_start.size() == 0) { + // tokenize all data at once + out_tokens.resize(buf.size() + n_max_tokens_overhead); + + int n_tokens = llama_tokenize( + lctx, + buf.data(), + (int) buf.size(), + out_tokens.data(), + (int) out_tokens.size(), + false); + if (n_tokens < 0) { + out_tokens.resize(-n_tokens); + n_tokens = llama_tokenize( + lctx, + buf.data(), + (int) buf.size(), + out_tokens.data(), + (int) out_tokens.size(), + false); + } + if (n_tokens >= 0) { + out_tokens.resize(n_tokens); + } + + // generate sample starts at all token positions + out_samples_begin.clear(); + out_samples_begin.push_back(0); + out_samples_size.push_back(std::min((size_t) context_length, out_tokens.size())); + size_t end = (out_tokens.size() >= context_length) ? (out_tokens.size() - context_length) : 0; + for (size_t sample_begin = 1; sample_begin < end; ++sample_begin) { + out_samples_begin.push_back(sample_begin); + out_samples_size.push_back(context_length); + } + } else { + // split data into samples and tokenize each sample + std::string data_str(buf.data(), buf.size()); + out_samples_begin.clear(); + out_samples_size.clear(); + out_tokens.clear(); + + // find all positions of pattern sample_start + size_t sample_begin = data_str.find(sample_start, 0); + while (sample_begin != std::string::npos) { + out_samples_begin.push_back(sample_begin); + const size_t search_start = sample_begin + sample_start.size(); + sample_begin = data_str.find(sample_start, search_start); + } + if (out_samples_begin.size() == 0) { + printf("%s: warning: sample start pattern '%s' not found. inserting single sample at data begin\n", + __func__, sample_start.c_str()); + out_samples_begin.push_back(0); + } + + out_samples_size.resize(out_samples_begin.size(), 0); + + std::vector<char> buf_sample; + std::vector<llama_token> tok_sample; + + const size_t sample_begin_offset = (include_sample_start ? 0 : sample_start.size()); + size_t found_too_big_sample = 0; + size_t found_too_small_sample = 0; + size_t found_empty_sample = 0; + size_t found_min_sample_size = SIZE_MAX; + size_t found_max_sample_size = 0; + + size_t max_token_text_size = 0; + int n_vocab = llama_n_vocab(lctx); + for (llama_token token=0; token < n_vocab; ++token) { + max_token_text_size = std::max( + max_token_text_size, + strlen(llama_token_get_text(lctx, token))); + } + + // upper bound of context byte length. + // strings with this byte length should always tokenize to at least context_length tokens. + size_t context_byte_len = max_token_text_size*context_length; + + for (unsigned i=0; i<out_samples_begin.size(); ++i) { + // determine sample begin and end from pattern positions + size_t sample_begin = out_samples_begin[i] + sample_begin_offset; + size_t sample_end = overlapping_samples + ? std::min( + data_str.size(), + sample_begin + context_byte_len) + : (i+1 < out_samples_begin.size() + ? out_samples_begin[i+1] + : data_str.size()); + if (sample_end < utf8_units.size() && utf8_units[sample_end] > 0) { + // sample end is in the middle of an utf8 character. + // advance sample_end to the begin of the next utf8 character. + sample_end += utf8_nunits[sample_end] - utf8_units[sample_end]; + } + size_t sample_size = sample_end - sample_begin; + if (sample_size == 0) { + ++found_empty_sample; + } + + if (sample_size > 0) { + // llama_tokenize expects zero terminated string, + // copy sample into buffer and zero terminate it. + buf_sample.resize(sample_size); + memcpy(buf_sample.data(), data_str.data() + sample_begin, sample_size); + + // printf("sample: '%s'\n", buf_sample.data()); + + // tokenize the sample + tok_sample.resize(buf_sample.size() + n_max_tokens_overhead); + int n_tokens = llama_tokenize(lctx, + buf_sample.data(), + (int) buf_sample.size(), + tok_sample.data(), + (int) tok_sample.size(), + false); + if (n_tokens < 0) { + tok_sample.resize(-n_tokens); + n_tokens = llama_tokenize(lctx, + buf_sample.data(), + (int) buf_sample.size(), + tok_sample.data(), + (int) tok_sample.size(), + false); + GGML_ASSERT(n_tokens >= 0); + } + GGML_ASSERT(n_tokens <= (int) tok_sample.size()); + + if ((size_t) n_tokens > context_length) { + ++found_too_big_sample; + } else if ((size_t) n_tokens < context_length) { + ++found_too_small_sample; + } + found_max_sample_size = std::max(found_max_sample_size, (size_t) n_tokens); + found_min_sample_size = std::min(found_min_sample_size, (size_t) n_tokens); + + // write out tokens, start and size of sample + // overwrite the string start position with the token start position + out_samples_begin[i] = out_tokens.size(); + out_samples_size[i] = (size_t) n_tokens; + out_tokens.insert(out_tokens.end(), tok_sample.begin(), tok_sample.begin() + n_tokens); + } else { + out_samples_begin[i] = out_tokens.size(); + out_samples_size[i] = 0; + } + + } + if (found_too_big_sample > 0) { + printf("%s: warning: found %zu samples (max length %zu) that exceed context length of %u. samples will be cut off.\n", + __func__, found_too_big_sample, found_max_sample_size, context_length); + } + + if (found_too_small_sample > 0) { + printf("%s: warning: found %zu samples (min length %zu) that are shorter than context length of %u.\n", + __func__, found_too_small_sample, found_min_sample_size, context_length); + } + + if (found_empty_sample) { + printf("%s: warning: found %zu empty samples.\n", + __func__, found_empty_sample); + } + } + printf("%s: total number of samples: %zu\n", + __func__, out_samples_begin.size()); + + GGML_ASSERT(out_samples_begin.size() == out_samples_size.size()); + + return out_tokens.size(); +} + +std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration) { + std::string sit = (iteration >= 0) ? std::to_string(iteration) : std::string(latest); + return replace_str(filename, pattern_it, sit.c_str()); +} + +struct train_params_common get_default_train_params_common() { + struct train_params_common params; + params.fn_train_data = "shakespeare.txt"; + params.fn_checkpoint_in = "checkpoint.gguf"; + params.fn_checkpoint_out = "checkpoint-ITERATION.gguf"; + params.pattern_fn_it = "ITERATION"; + params.fn_latest = "LATEST"; + + params.print_usage = false; + + params.save_every = 10; + + params.seed = -1; + + params.n_ctx = 128; + params.n_threads = 6; + params.n_batch = 8; + params.n_gradient_accumulation = 1; + params.n_epochs = -1; + + params.custom_n_ctx = false; + + params.use_flash = true; + params.use_checkpointing = true; + + params.sample_start = ""; + params.include_sample_start = false; + params.escape = false; + params.overlapping_samples = false; + params.fill_with_next_samples = false; + params.separate_with_eos = false; + params.separate_with_bos = true; + params.sample_random_offsets = false; + params.force_reshuffle = false; + + params.opt_past = 0; + params.opt_delta = 1e-5f; + params.opt_max_no_improvement = 0; + + params.warmup = 100; + params.cos_decay_steps = 1000; + params.cos_decay_restart = 1.1f; + params.cos_decay_min = 0.1f; + params.enable_restart = false; + + params.adam_n_iter = 256; + params.adam_alpha = 1e-3f; + params.adam_min_alpha = 0; + params.adam_decay = 1e-1f; + params.adam_decay_min_ndim = 2; + params.adam_beta1 = 0.9f; + params.adam_beta2 = 0.999f; + params.adam_gclip = 1.0f; + params.adam_eps_f = 0.0f; + return params; +} + +void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train_params_common * params) { + // fprintf(stderr, "usage: %s [options]\n", argv[0]); + // fprintf(stderr, "\n"); + // fprintf(stderr, "options:\n"); + // fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data); + fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in); + fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out); + fprintf(stderr, " --pattern-fn-it STR pattern in output filenames to be replaced by iteration number (default '%s')\n", params->pattern_fn_it); + fprintf(stderr, " --fn-latest STR string to use instead of iteration number for saving latest output (default '%s')\n", params->fn_latest); + fprintf(stderr, " --save-every N save checkpoint and lora every N iterations. Disabled when N <= 0. (default '%d')\n", params->save_every); + fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n"); + fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); + fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); + fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch); + fprintf(stderr, " --grad-acc N Number of gradient accumulation steps (simulates larger batch size of batch*gradacc) (default %d)\n", params->n_gradient_accumulation); + fprintf(stderr, " --sample-start STR Sets the starting point for samples after the specified pattern. If empty use every token position as sample start. (default '%s')\n", params->sample_start.c_str()); + fprintf(stderr, " --include-sample-start Include the sample start in the samples. (default off)\n"); + fprintf(stderr, " --escape process sample start escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n"); + fprintf(stderr, " --overlapping-samples Samples my overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n"); + fprintf(stderr, " --fill-with-next-samples Samples shorter than context length will be followed by the next (shuffled) samples. (default off)\n"); + fprintf(stderr, " --separate-with-eos When fill-with-next-samples, insert end-of-sequence token between samples.%s\n", params->separate_with_eos ? " (default)" : ""); + fprintf(stderr, " --separate-with-bos When fill-with-next-samples, insert begin-of-sequence token between samples.%s\n", params->separate_with_bos ? " (default)" : ""); + fprintf(stderr, " --no-separate-with-eos When fill-with-next-samples, don't insert end-of-sequence token between samples.%s\n", !params->separate_with_eos ? " (default)" : ""); + fprintf(stderr, " --no-separate-with-bos When fill-with-next-samples, don't insert begin-of-sequence token between samples.%s\n", !params->separate_with_bos ? " (default)" : ""); + fprintf(stderr, " --sample-random-offsets Use samples beginning at random offsets. Together with fill-with-next-samples this may help for training endless text generation.%s\n", params->sample_random_offsets ? " (default)" : ""); + fprintf(stderr, " --force-reshuffle Force a reshuffling of data at program start, otherwise the shuffling of loaded checkpoint is resumed.\n"); + fprintf(stderr, " --no-flash Don't use flash attention \n"); + fprintf(stderr, " --use-flash Use flash attention (default)\n"); + fprintf(stderr, " --no-checkpointing Don't use gradient checkpointing\n"); + fprintf(stderr, " --use-checkpointing Use gradient checkpointing (default)\n"); + fprintf(stderr, " --warmup N Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup); + fprintf(stderr, " --cos-decay-steps N Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps); + fprintf(stderr, " --cos-decay-restart N Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart); + fprintf(stderr, " --cos-decay-min N Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min); + fprintf(stderr, " --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : ""); + fprintf(stderr, " --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : ""); + fprintf(stderr, " --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past); + fprintf(stderr, " --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta); + fprintf(stderr, " --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement); + fprintf(stderr, " --epochs N Maximum number epochs to process. (default %d)\n", params->n_epochs); + fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter); + fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha); + fprintf(stderr, " --adam-min-alpha N Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha); + fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay); + fprintf(stderr, " --adam-decay-min-ndim N Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim); + fprintf(stderr, " --adam-beta1 N AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1); + fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2); + fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip); + fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f); + fprintf(stderr, "\n"); +} + +bool consume_common_train_arg( + int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param +) { + int& i = *idx; + std::string arg = argv[i]; + const std::string arg_prefix = "--"; + if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { + std::replace(arg.begin(), arg.end(), '_', '-'); + } + if (arg == "--train-data") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->fn_train_data = argv[i]; + } else if (arg == "--checkpoint-in") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->fn_checkpoint_in = argv[i]; + } else if (arg == "--checkpoint-out") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->fn_checkpoint_out = argv[i]; + } else if (arg == "--pattern-fn-it") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->pattern_fn_it = argv[i]; + } else if (arg == "--fn-latest") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->fn_latest = argv[i]; + } else if (arg == "--save-every") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->save_every = std::stoi(argv[i]); + } else if (arg == "-s" || arg == "--seed") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->seed = std::stoi(argv[i]); + } else if (arg == "-c" || arg == "--ctx") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_ctx = std::stoi(argv[i]); + params->custom_n_ctx = true; + } else if (arg == "-t" || arg == "--threads") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_threads = std::stoi(argv[i]); + } else if (arg == "-b" || arg == "--batch") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_batch = std::stoi(argv[i]); + } else if (arg == "--grad-acc") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_gradient_accumulation = std::max(1, std::stoi(argv[i])); + } else if (arg == "--sample-start") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->sample_start = std::string(argv[i]); + } else if (arg == "--escape") { + params->escape = true; + } else if (arg == "--include-sample-start") { + params->include_sample_start = true; + } else if (arg == "--overlapping-samples") { + params->overlapping_samples = true; + } else if (arg == "--fill-with-next-samples") { + params->fill_with_next_samples = true; + } else if (arg == "--separate-with-eos") { + params->separate_with_eos = true; + } else if (arg == "--separate-with-bos") { + params->separate_with_bos = true; + } else if (arg == "--no-separate-with-eos") { + params->separate_with_eos = false; + } else if (arg == "--no-separate-with-bos") { + params->separate_with_bos = false; + } else if (arg == "--sample-random-offsets") { + params->sample_random_offsets = true; + } else if (arg == "--force-reshuffle") { + params->force_reshuffle = true; + } else if (arg == "--no-flash") { + params->use_flash = false; + } else if (arg == "--use-flash") { + params->use_flash = true; + } else if (arg == "--no-checkpointing") { + params->use_checkpointing = false; + } else if (arg == "--use-checkpointing") { + params->use_checkpointing = true; + } else if (arg == "--warmup") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->warmup = std::stoi(argv[i]); + } else if (arg == "--cos-decay-steps") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->cos_decay_steps = std::stoi(argv[i]); + } else if (arg == "--cos-decay-restart") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->cos_decay_restart = std::stof(argv[i]); + } else if (arg == "--cos-decay-min") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->cos_decay_min = std::stof(argv[i]); + } else if (arg == "--enable-restart") { + params->enable_restart = true; + } else if (arg == "--disable-restart") { + params->enable_restart = false; + } else if (arg == "--opt-past") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->opt_past = std::stoi(argv[i]); + } else if (arg == "--opt-delta") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->opt_delta = std::stof(argv[i]); + } else if (arg == "--opt-max-no-improvement") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->opt_max_no_improvement = std::stoi(argv[i]); + } else if (arg == "--adam-epsf") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_eps_f = std::stof(argv[i]); + } else if (arg == "--epochs") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_epochs = std::stoi(argv[i]); + } else if (arg == "--adam-iter") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_n_iter = std::stoi(argv[i]); + } else if (arg == "--adam-alpha") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_alpha = std::stof(argv[i]); + } else if (arg == "--adam-min-alpha") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_min_alpha = std::stof(argv[i]); + } else if (arg == "--adam-decay") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_decay = std::stof(argv[i]); + } else if (arg == "--adam-decay-min-ndim") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_decay_min_ndim = std::stoi(argv[i]); + } else if (arg == "--adam-beta1") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_beta1 = std::stof(argv[i]); + } else if (arg == "--adam-beta2") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_beta2 = std::stof(argv[i]); + } else if (arg == "--adam-gclip") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_gclip = std::stof(argv[i]); + } else if (arg == "-h" || arg == "--help") { + params->print_usage = true; + return true; + } else { + return false; + } + return true; +} + +void finish_processing_train_args(struct train_params_common * params) { + if (params->escape) { + process_escapes(params->sample_start); + } +} + +void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel) { + struct train_opt_callback_data * data = (struct train_opt_callback_data *) vdata; + struct train_params_common * params = data->params; + struct train_state * train = data->train; + struct ggml_opt_context * opt = train->opt; + int n_batch = params->n_batch; + int n_ctx = params->n_ctx; + + if (accum_step == 0) { + // time measurement + int64_t now = ggml_time_ms(); + if (now > data->last_time && opt->iter > data->first_iter) { + double dt = (double) (now - data->last_time); + if (data->millis_per_iter == 0.0) { + data->millis_per_iter = dt; + } else { + const double gain = 0.7; + data->millis_per_iter = data->millis_per_iter*(1.0-gain) + dt*gain; + } + } + + double remaining_millis = 0.0; + if (data->millis_per_iter > 0.0) { + const int n_iter = params->adam_n_iter; + const int done_iter = opt->iter - data->first_iter; + const int remaining_iter = n_iter - done_iter; + remaining_millis = remaining_iter * data->millis_per_iter; + } + + // file saving + const bool save_now = (params->save_every > 0) && (opt->iter - data->last_save_iter >= params->save_every); + if (save_now) { + int new_iters = opt->iter - data->last_save_iter; + train->train_its += new_iters; + train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_ctx; + + if (data->save_cb) { + data->save_cb(data->save_data, train); + } + + data->last_save_iter = opt->iter; + } + + // exclude file saving from time measurement, by measuring last_time after saving + data->last_time = ggml_time_ms(); + + *sched = learning_schedule( + opt->iter, + params->warmup, + params->cos_decay_steps, + params->adam_alpha, + params->adam_min_alpha, + params->cos_decay_min, + params->cos_decay_restart, + params->enable_restart); + + int impr_plot = -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f); + if (impr_plot > 0) impr_plot = 0; + if (std::isnan(opt->loss_before) || std::isnan(opt->loss_before)) impr_plot = 0; + printf("%s: iter=%6d sample=%zu/%zu sched=%f loss=%f", + __func__, opt->iter, std::min(1+train->shuffle_next_sample, train->shuffle_sample_count), train->shuffle_sample_count, + *sched, opt->loss_after); + + + if (data->millis_per_iter > 0) { + printf(" dt="); + print_duration(data->millis_per_iter); + printf(" eta="); + print_duration(remaining_millis); + } + + float improvement = opt->loss_before - opt->loss_after; + const float plot_scale = 10.0f; + int bar_len = (int)(1 + improvement*plot_scale + 0.5); + printf(" |"); + for (int i=0; i<bar_len; ++i) { + printf("-"); + } + printf(">"); + printf("\n"); + } + + int64_t used_samples = get_example_targets_batch( + data->lctx, + data->tokens_input, + data->target_probs, + train->shuffle_next_sample, + data->shuffled_samples_offs, + data->shuffled_samples_begin, + data->shuffled_samples_size, + data->samples_count, + data->tokens_data, + data->tokens_size, + params->separate_with_eos, + params->separate_with_bos, + params->fill_with_next_samples, + params->sample_random_offsets); + + train->train_samples += used_samples; + train->shuffle_next_sample += used_samples; + + if (train->shuffle_next_sample >= train->shuffle_sample_count) { + ++train->train_epochs; + printf("%s: reshuffle samples. completed epochs: %llu\n", __func__, (long long unsigned) train->train_epochs); + // note: we may have used some samples from the current shuffling more than once + train->shuffle_rng_state_current = train->shuffle_rng_state_next; + train->shuffle_rng_state_next = shuffle_samples( + train->shuffle_rng_state_current, + data->shuffled_samples_offs, + data->shuffled_samples_begin, + data->shuffled_samples_size, + data->samples_begin, + data->samples_size, + data->samples_count); + train->shuffle_next_sample = 0; + } + + const bool last_epoch_reached = (params->n_epochs > 0 && (int64_t) train->train_epochs - data->first_epoch >= params->n_epochs); + if (last_epoch_reached) { + // allow optimization iteration at last epoch to be completed before canceling + if (data->iter_at_last_epoch < 0) { + data->iter_at_last_epoch = opt->iter; + } else if (opt->iter > data->iter_at_last_epoch) { + *cancel = true; + } + } +} |