summaryrefslogtreecommitdiff
path: root/common
diff options
context:
space:
mode:
Diffstat (limited to 'common')
-rw-r--r--common/common.cpp50
-rw-r--r--common/sampling.cpp69
-rw-r--r--common/sampling.h17
3 files changed, 114 insertions, 22 deletions
diff --git a/common/common.cpp b/common/common.cpp
index 20e583fc..208d4511 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -666,6 +666,47 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
sparams.top_n_sigma = std::stof(argv[i]);
return true;
}
+
+ if (arg == "--dry-multiplier") {
+ CHECK_ARG
+ sparams.dry_multiplier = std::stof(argv[i]);
+ return true;
+ }
+ if (arg == "--dry-base") {
+ CHECK_ARG
+ sparams.dry_base = std::stof(argv[i]);
+ return true;
+ }
+ if (arg == "--dry-allowed-length") {
+ CHECK_ARG
+ sparams.dry_allowed_length = std::stof(argv[i]);
+ return true;
+ }
+ if (arg == "--dry-penalty-last-n") {
+ CHECK_ARG
+ sparams.dry_penalty_last_n = std::stof(argv[i]);
+ return true;
+ }
+ if (arg == "--dry-sequence-breaker") {
+ CHECK_ARG
+ static bool defaults_cleared = false;
+
+ if (!defaults_cleared) {
+ params.sparams.dry_sequence_breakers.clear();
+ defaults_cleared = true;
+ }
+ std::string value= std::string(argv[i]);
+ if (value == "none") {
+ params.sparams.dry_sequence_breakers.clear();
+ }
+ else {
+ for (size_t i; i < value.size(); i++)
+ {
+ params.sparams.dry_sequence_breakers.emplace_back(""+value[i]);
+ }
+ }
+ return true;
+ }
if (arg == "--cfg-negative-prompt") {
CHECK_ARG
sparams.cfg_negative_prompt = argv[i];
@@ -2326,6 +2367,11 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
}
+ if (params.sparams.dry_penalty_last_n == -1) {
+ LOG("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
+ params.sparams.dry_penalty_last_n = llama_n_ctx(lctx);
+ }
+
if (params.warmup) {
LOG("warming up the model with an empty run\n");
@@ -3389,6 +3435,10 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
+ fprintf(stream, "dry_allowed_length: %d # default: 2\n", sparams.dry_allowed_length);
+ fprintf(stream, "dry_base: %.2f # default: 1.75\n", sparams.dry_base);
+ fprintf(stream, "dry_multiplier: %.1f # default: 0.0\n", sparams.dry_multiplier);
+ fprintf(stream, "dry_penalty_last_n: %d # default: -1 (0 = disable, -1 = context size)\n", sparams.dry_penalty_last_n);
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
diff --git a/common/sampling.cpp b/common/sampling.cpp
index 4db12ee1..4b983e5f 100644
--- a/common/sampling.cpp
+++ b/common/sampling.cpp
@@ -1,8 +1,9 @@
#define LLAMA_API_INTERNAL
#include "sampling.h"
+#include "llama-vocab.h"
#include <random>
-struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
+struct llama_sampling_context * llama_sampling_init(const struct llama_vocab* vocab, const struct llama_sampling_params & params) {
struct llama_sampling_context * result = new llama_sampling_context();
result->params = params;
@@ -36,13 +37,32 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
}
result->grammar = grammar;
}
-
result->prev.resize(params.n_prev);
result->n_valid = 0;
+ // init DRY
+ for (const auto& cnstr : params.samplers_sequence)
+ {
+ switch (cnstr)
+ {
+ case llama_sampler_type::DRY:
+ {
+ std::vector<const char*> c_breakers;
+ c_breakers.reserve(params.dry_sequence_breakers.size());
+ for (const auto& str : params.dry_sequence_breakers)
+ {
+ c_breakers.push_back(str.c_str());
+ }
+ result->smpl=llama_sampler_init_dry(vocab, params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size());
+
+ break;
+ }
+ default:
+ break;
+ }
+ }
llama_sampling_set_rng_seed(result, params.seed);
-
return result;
}
@@ -50,7 +70,8 @@ void llama_sampling_free(struct llama_sampling_context * ctx) {
if (ctx->grammar != NULL) {
llama_grammar_free(ctx->grammar);
}
-
+ if (ctx->smpl !=NULL)
+ llama_sampler_dry_free(ctx->smpl);
delete ctx;
}
@@ -75,6 +96,7 @@ void llama_sampling_reset(llama_sampling_context * ctx) {
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
ctx->cur.clear();
ctx->n_valid = 0;
+ llama_sampler_dry_reset(ctx->smpl);
}
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
@@ -95,6 +117,7 @@ void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * ds
}
dst->prev = src->prev;
+ dst->smpl = llama_sampler_dry_clone(src->smpl);
}
llama_token llama_sampling_last(llama_sampling_context * ctx) {
@@ -149,6 +172,7 @@ std::string llama_sampling_order_print(const llama_sampling_params & params) {
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
switch (sampler_type) {
+ case llama_sampler_type::DRY: return "dry";
case llama_sampler_type::TOP_K: return "top_k";
case llama_sampler_type::TFS_Z: return "tfs_z";
case llama_sampler_type::TYPICAL_P: return "typical_p";
@@ -163,6 +187,7 @@ std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
+ {"dry", llama_sampler_type::DRY},
{"top_k", llama_sampler_type::TOP_K},
{"top_p", llama_sampler_type::TOP_P},
{"typical_p", llama_sampler_type::TYPICAL_P},
@@ -176,6 +201,7 @@ std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vecto
// since samplers names are written multiple ways
// make it ready for both system names and input names
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
+ {"dry", llama_sampler_type::DRY},
{"top-k", llama_sampler_type::TOP_K},
{"top-p", llama_sampler_type::TOP_P},
{"nucleus", llama_sampler_type::TOP_P},
@@ -215,6 +241,7 @@ std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vecto
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
std::unordered_map<char, llama_sampler_type> sampler_name_map {
+ {'d', llama_sampler_type::DRY},
{'k', llama_sampler_type::TOP_K},
{'p', llama_sampler_type::TOP_P},
{'y', llama_sampler_type::TYPICAL_P},
@@ -238,25 +265,28 @@ std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::strin
// no reasons to expose this function in header
static void sampler_queue(
- struct llama_context * ctx_main,
- const llama_sampling_params & params,
- llama_token_data_array & cur_p,
- size_t min_keep) {
- const float temp = params.temp;
- const float dynatemp_range = params.dynatemp_range;
+ struct llama_context* ctx_main,
+ const llama_sampling_params& params,
+ llama_sampling_context * ctx_sampling,
+ llama_token_data_array& cur_p,
+ size_t min_keep) {
+ const float temp = params.temp;
+ const float dynatemp_range = params.dynatemp_range;
const float dynatemp_exponent = params.dynatemp_exponent;
- const int32_t top_k = params.top_k;
- const float top_p = params.top_p;
- const float min_p = params.min_p;
- const float tfs_z = params.tfs_z;
- const float typical_p = params.typical_p;
- const float xtc_probability = params.xtc_probability;
- const float xtc_threshold = params.xtc_threshold;
- const float top_n_sigma = params.top_n_sigma;
+ const int32_t top_k = params.top_k;
+ const float top_p = params.top_p;
+ const float min_p = params.min_p;
+ const float tfs_z = params.tfs_z;
+ const float typical_p = params.typical_p;
+ const float xtc_probability = params.xtc_probability;
+ const float xtc_threshold = params.xtc_threshold;
+ const float top_n_sigma = params.top_n_sigma;
+
const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
for (auto sampler_type : samplers_sequence) {
switch (sampler_type) {
+ case llama_sampler_type::DRY : llama_sample_dry (ctx_main, ctx_sampling->smpl, &cur_p); break;
case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
case llama_sampler_type::TYPICAL_P : llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
@@ -317,7 +347,7 @@ static llama_token llama_sampling_sample_impl(
// temperature sampling
size_t min_keep = std::max(1, params.min_keep);
- sampler_queue(ctx_main, params, cur_p, min_keep);
+ sampler_queue(ctx_main, params,ctx_sampling, cur_p, min_keep);
id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
@@ -472,4 +502,5 @@ void llama_sampling_accept(
if (ctx_sampling->grammar != NULL && apply_grammar) {
llama_grammar_accept_token(ctx_sampling->grammar, ctx_main, id);
}
+ llama_sampler_dry_accept(ctx_sampling->smpl, id);
}
diff --git a/common/sampling.h b/common/sampling.h
index 4fc86595..1d5bf0b9 100644
--- a/common/sampling.h
+++ b/common/sampling.h
@@ -35,11 +35,16 @@ typedef struct llama_sampling_params {
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
- int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
+ int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.00f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
- int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
+ float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
+ float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
+ int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
+ int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
+ int32_t total_context_size = 16840;
+ int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
float xtc_probability = 0.0f; // xtc probability
@@ -48,12 +53,16 @@ typedef struct llama_sampling_params {
bool penalize_nl = false; // consider newlines as a repeatable token
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
+ std::vector<std::string> dry_sequence_breakers = { "\n", ":", "\"", "*" }; // default sequence breakers for DRY
+
std::vector<llama_sampler_type> samplers_sequence = {
+ llama_sampler_type::DRY,
llama_sampler_type::TOP_K,
llama_sampler_type::TFS_Z,
llama_sampler_type::TYPICAL_P,
llama_sampler_type::TOP_P,
llama_sampler_type::MIN_P,
+ llama_sampler_type::XTC,
llama_sampler_type::TOP_N_SIGMA,
llama_sampler_type::TEMPERATURE
};
@@ -88,6 +97,8 @@ struct llama_sampling_context {
// TODO: replace with ring-buffer
std::vector<llama_token> prev;
std::vector<llama_token_data> cur;
+ llama_sampler_dry* smpl;
+
size_t n_valid; // Number of correct top tokens with correct probabilities.
std::mt19937 rng;
@@ -96,7 +107,7 @@ struct llama_sampling_context {
#include "common.h"
// Create a new sampling context instance.
-struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params);
+struct llama_sampling_context * llama_sampling_init(const struct llama_vocab* vocab, const struct llama_sampling_params & params);
void llama_sampling_free(struct llama_sampling_context * ctx);