summaryrefslogtreecommitdiff
path: root/common
diff options
context:
space:
mode:
Diffstat (limited to 'common')
-rw-r--r--common/CMakeLists.txt2
-rw-r--r--common/common.cpp228
-rw-r--r--common/common.h56
-rw-r--r--common/sampling.cpp166
-rw-r--r--common/sampling.h108
5 files changed, 336 insertions, 224 deletions
diff --git a/common/CMakeLists.txt b/common/CMakeLists.txt
index 951aa834..fbb0ff09 100644
--- a/common/CMakeLists.txt
+++ b/common/CMakeLists.txt
@@ -5,6 +5,8 @@ set(TARGET common)
add_library(${TARGET} OBJECT
common.h
common.cpp
+ sampling.h
+ sampling.cpp
console.h
console.cpp
grammar-parser.h
diff --git a/common/common.cpp b/common/common.cpp
index 0f55c33a..4214e63a 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -107,6 +107,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
std::string arg;
gpt_params default_params;
const std::string arg_prefix = "--";
+ llama_sampling_params & sparams = params.sampling_params;
for (int i = 1; i < argc; i++) {
arg = argv[i];
@@ -184,7 +185,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
invalid_param = true;
break;
}
- params.top_k = std::stoi(argv[i]);
+ sparams.top_k = std::stoi(argv[i]);
} else if (arg == "-c" || arg == "--ctx-size") {
if (++i >= argc) {
invalid_param = true;
@@ -216,73 +217,73 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
invalid_param = true;
break;
}
- params.top_p = std::stof(argv[i]);
+ sparams.top_p = std::stof(argv[i]);
} else if (arg == "--temp") {
if (++i >= argc) {
invalid_param = true;
break;
}
- params.temp = std::stof(argv[i]);
+ sparams.temp = std::stof(argv[i]);
} else if (arg == "--tfs") {
if (++i >= argc) {
invalid_param = true;
break;
}
- params.tfs_z = std::stof(argv[i]);
+ sparams.tfs_z = std::stof(argv[i]);
} else if (arg == "--typical") {
if (++i >= argc) {
invalid_param = true;
break;
}
- params.typical_p = std::stof(argv[i]);
+ sparams.typical_p = std::stof(argv[i]);
} else if (arg == "--repeat-last-n") {
if (++i >= argc) {
invalid_param = true;
break;
}
- params.repeat_last_n = std::stoi(argv[i]);
+ sparams.repeat_last_n = std::stoi(argv[i]);
} else if (arg == "--repeat-penalty") {
if (++i >= argc) {
invalid_param = true;
break;
}
- params.repeat_penalty = std::stof(argv[i]);
+ sparams.repeat_penalty = std::stof(argv[i]);
} else if (arg == "--frequency-penalty") {
if (++i >= argc) {
invalid_param = true;
break;
}
- params.frequency_penalty = std::stof(argv[i]);
+ sparams.frequency_penalty = std::stof(argv[i]);
} else if (arg == "--presence-penalty") {
if (++i >= argc) {
invalid_param = true;
break;
}
- params.presence_penalty = std::stof(argv[i]);
+ sparams.presence_penalty = std::stof(argv[i]);
} else if (arg == "--mirostat") {
if (++i >= argc) {
invalid_param = true;
break;
}
- params.mirostat = std::stoi(argv[i]);
+ sparams.mirostat = std::stoi(argv[i]);
} else if (arg == "--mirostat-lr") {
if (++i >= argc) {
invalid_param = true;
break;
}
- params.mirostat_eta = std::stof(argv[i]);
+ sparams.mirostat_eta = std::stof(argv[i]);
} else if (arg == "--mirostat-ent") {
if (++i >= argc) {
invalid_param = true;
break;
}
- params.mirostat_tau = std::stof(argv[i]);
+ sparams.mirostat_tau = std::stof(argv[i]);
} else if (arg == "--cfg-negative-prompt") {
if (++i >= argc) {
invalid_param = true;
break;
}
- params.cfg_negative_prompt = argv[i];
+ sparams.cfg_negative_prompt = argv[i];
} else if (arg == "--cfg-negative-prompt-file") {
if (++i >= argc) {
invalid_param = true;
@@ -294,16 +295,16 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
invalid_param = true;
break;
}
- std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.cfg_negative_prompt));
- if (!params.cfg_negative_prompt.empty() && params.cfg_negative_prompt.back() == '\n') {
- params.cfg_negative_prompt.pop_back();
+ std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
+ if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
+ sparams.cfg_negative_prompt.pop_back();
}
} else if (arg == "--cfg-scale") {
if (++i >= argc) {
invalid_param = true;
break;
}
- params.cfg_scale = std::stof(argv[i]);
+ sparams.cfg_scale = std::stof(argv[i]);
} else if (arg == "-b" || arg == "--batch-size") {
if (++i >= argc) {
invalid_param = true;
@@ -512,7 +513,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
} else if (arg == "--ignore-eos") {
params.ignore_eos = true;
} else if (arg == "--no-penalize-nl") {
- params.penalize_nl = false;
+ sparams.penalize_nl = false;
} else if (arg == "-l" || arg == "--logit-bias") {
if (++i >= argc) {
invalid_param = true;
@@ -524,7 +525,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
std::string value_str;
try {
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
- params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
+ sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
} else {
throw std::exception();
}
@@ -627,6 +628,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
}
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
+ const llama_sampling_params & sparams = params.sampling_params;
+
printf("usage: %s [options]\n", argv[0]);
printf("\n");
printf("options:\n");
@@ -659,19 +662,19 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
- printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
- printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
- printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
- printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p);
- printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
- printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty);
- printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty);
- printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty);
+ printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
+ printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
+ printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
+ printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
+ printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.repeat_last_n);
+ printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.repeat_penalty);
+ printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.presence_penalty);
+ printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.frequency_penalty);
printf(" --mirostat N use Mirostat sampling.\n");
printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
- printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat);
- printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta);
- printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau);
+ printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
+ printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
+ printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
printf(" modifies the likelihood of token appearing in the completion,\n");
printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
@@ -682,7 +685,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" negative prompt to use for guidance. (default: empty)\n");
printf(" --cfg-negative-prompt-file FNAME\n");
printf(" negative prompt file to use for guidance. (default: empty)\n");
- printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
+ printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale\n");
printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency linear scaling factor (default: loaded from model)\n");
@@ -690,7 +693,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --no-penalize-nl do not penalize newline token\n");
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
- printf(" --temp N temperature (default: %.1f)\n", (double)params.temp);
+ printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
@@ -840,7 +843,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
}
if (params.ignore_eos) {
- params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
+ params.sampling_params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
}
{
@@ -933,127 +936,6 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_to
}
//
-// Sampling utils
-//
-
-llama_token llama_sample_token(
- struct llama_context * ctx,
- struct llama_context * ctx_guidance,
- struct llama_grammar * grammar,
- const struct gpt_params & params,
- const std::vector<llama_token> & last_tokens,
- std::vector<llama_token_data> & candidates,
- int idx) {
- const int n_ctx = llama_n_ctx(ctx);
- const int n_vocab = llama_n_vocab(llama_get_model(ctx));
-
- const float temp = params.temp;
- const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
- const float top_p = params.top_p;
- const float tfs_z = params.tfs_z;
- const float typical_p = params.typical_p;
- const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
- const float repeat_penalty = params.repeat_penalty;
- const float alpha_presence = params.presence_penalty;
- const float alpha_frequency = params.frequency_penalty;
- const int mirostat = params.mirostat;
- const float mirostat_tau = params.mirostat_tau;
- const float mirostat_eta = params.mirostat_eta;
- const bool penalize_nl = params.penalize_nl;
-
- llama_token id = 0;
-
- float * logits = llama_get_logits_ith(ctx, idx);
-
- // Apply params.logit_bias map
- for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
- logits[it->first] += it->second;
- }
-
- candidates.clear();
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
-
- llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
-
- if (ctx_guidance) {
- llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
- }
-
- // apply penalties
- if (!last_tokens.empty()) {
- const float nl_logit = logits[llama_token_nl(ctx)];
- const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
-
- llama_sample_repetition_penalty(ctx, &cur_p,
- last_tokens.data() + last_tokens.size() - last_n_repeat,
- last_n_repeat, repeat_penalty);
- llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
- last_tokens.data() + last_tokens.size() - last_n_repeat,
- last_n_repeat, alpha_frequency, alpha_presence);
-
- if (!penalize_nl) {
- for (size_t idx = 0; idx < cur_p.size; idx++) {
- if (cur_p.data[idx].id == llama_token_nl(ctx)) {
- cur_p.data[idx].logit = nl_logit;
- break;
- }
- }
- }
- }
-
- if (grammar != NULL) {
- llama_sample_grammar(ctx, &cur_p, grammar);
- }
-
- if (temp <= 0) {
- // Greedy sampling
- id = llama_sample_token_greedy(ctx, &cur_p);
- } else {
- if (mirostat == 1) {
- static float mirostat_mu = 2.0f * mirostat_tau;
- const int mirostat_m = 100;
- llama_sample_temp(ctx, &cur_p, temp);
- id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
- } else if (mirostat == 2) {
- static float mirostat_mu = 2.0f * mirostat_tau;
- llama_sample_temp(ctx, &cur_p, temp);
- id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
- } else {
- // Temperature sampling
- size_t min_keep = std::max(1, params.n_probs);
- llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
- llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
- llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
- llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
- llama_sample_temp(ctx, &cur_p, temp);
-
- {
- const int n_top = 10;
- LOG("top %d candidates:\n", n_top);
-
- for (int i = 0; i < n_top; i++) {
- const llama_token id = cur_p.data[i].id;
- LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
- }
- }
-
- id = llama_sample_token(ctx, &cur_p);
-
- LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
- }
- }
- // printf("`%d`", candidates_p.size);
-
- if (grammar != NULL) {
- llama_grammar_accept_token(ctx, grammar, id);
- }
-
- return id;
-}
-
-//
// YAML utils
//
@@ -1204,6 +1086,8 @@ std::string get_sortable_timestamp() {
void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
+ const llama_sampling_params & sparams = params.sampling_params;
+
fprintf(stream, "build_commit: %s\n", BUILD_COMMIT);
fprintf(stream, "build_number: %d\n", BUILD_NUMBER);
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
@@ -1250,21 +1134,21 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
- dump_string_yaml_multiline(stream, "cfg_negative_prompt", params.cfg_negative_prompt.c_str());
- fprintf(stream, "cfg_scale: %f # default: 1.0\n", params.cfg_scale);
+ dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
+ fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
- fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", params.frequency_penalty);
+ fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.frequency_penalty);
dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str());
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
- const auto logit_bias_eos = params.logit_bias.find(llama_token_eos(lctx));
- const bool ignore_eos = logit_bias_eos != params.logit_bias.end() && logit_bias_eos->second == -INFINITY;
+ const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(lctx));
+ const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
@@ -1277,7 +1161,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
fprintf(stream, "logit_bias:\n");
- for (std::pair<llama_token, float> lb : params.logit_bias) {
+ for (std::pair<llama_token, float> lb : sparams.logit_bias) {
if (ignore_eos && lb.first == logit_bias_eos->first) {
continue;
}
@@ -1301,30 +1185,30 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
- fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat);
- fprintf(stream, "mirostat_ent: %f # default: 5.0\n", params.mirostat_tau);
- fprintf(stream, "mirostat_lr: %f # default: 0.1\n", params.mirostat_eta);
+ fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
+ fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
+ fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
- fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs);
+ fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
- fprintf(stream, "no_penalize_nl: %s # default: false\n", !params.penalize_nl ? "true" : "false");
+ fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
- fprintf(stream, "presence_penalty: %f # default: 0.0\n", params.presence_penalty);
+ fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.presence_penalty);
dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
- fprintf(stream, "repeat_penalty: %f # default: 1.1\n", params.repeat_penalty);
+ fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.repeat_penalty);
fprintf(stream, "reverse_prompt:\n");
for (std::string ap : params.antiprompt) {
@@ -1342,15 +1226,15 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed);
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
- fprintf(stream, "temp: %f # default: 0.8\n", params.temp);
+ fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
- fprintf(stream, "tfs: %f # default: 1.0\n", params.tfs_z);
+ fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency());
- fprintf(stream, "top_k: %d # default: 40\n", params.top_k);
- fprintf(stream, "top_p: %f # default: 0.95\n", params.top_p);
- fprintf(stream, "typical_p: %f # default: 1.0\n", params.typical_p);
+ fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
+ fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
+ fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
}
diff --git a/common/common.h b/common/common.h
index c8021527..fa115536 100644
--- a/common/common.h
+++ b/common/common.h
@@ -4,6 +4,8 @@
#include "llama.h"
+#include "sampling.h"
+
#define LOG_NO_FILE_LINE_FUNCTION
#include "log.h"
@@ -49,31 +51,12 @@ struct gpt_params {
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
- int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t n_beams = 0; // if non-zero then use beam search of given width.
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
- // sampling parameters
- int32_t top_k = 40; // <= 0 to use vocab size
- float top_p = 0.95f; // 1.0 = disabled
- float tfs_z = 1.00f; // 1.0 = disabled
- float typical_p = 1.00f; // 1.0 = disabled
- float temp = 0.80f; // 1.0 = disabled
- float repeat_penalty = 1.10f; // 1.0 = disabled
- int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
- float frequency_penalty = 0.00f; // 0.0 = disabled
- float presence_penalty = 0.00f; // 0.0 = disabled
- int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
- float mirostat_tau = 5.00f; // target entropy
- float mirostat_eta = 0.10f; // learning rate
-
- std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
-
- // Classifier-Free Guidance
- // https://arxiv.org/abs/2306.17806
- std::string cfg_negative_prompt; // string to help guidance
- float cfg_scale = 1.f; // How strong is guidance
+ // // sampling parameters
+ struct llama_sampling_params sampling_params;
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
std::string model_draft = ""; // draft model for speculative decoding
@@ -115,7 +98,6 @@ struct gpt_params {
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens
bool instruct = false; // instruction mode (used for Alpaca models)
- bool penalize_nl = true; // consider newlines as a repeatable token
bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
@@ -181,36 +163,6 @@ std::string llama_detokenize_bpe(
const std::vector<llama_token> & tokens);
//
-// Sampling utils
-//
-
-// this is a common sampling function used across the examples for convenience
-// it can serve as a starting point for implementing your own sampling function
-//
-// required:
-// - ctx: context to use for sampling
-// - params: sampling parameters
-//
-// optional:
-// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
-// - grammar: grammar to use for sampling, ignore if NULL
-// - last_tokens: needed for repetition penalty, ignore if empty
-// - idx: sample from llama_get_logits_ith(ctx, idx)
-//
-// returns:
-// - token: sampled token
-// - candidates: vector of candidate tokens
-//
-llama_token llama_sample_token(
- struct llama_context * ctx,
- struct llama_context * ctx_guidance,
- struct llama_grammar * grammar,
- const struct gpt_params & params,
- const std::vector<llama_token> & last_tokens,
- std::vector<llama_token_data> & candidates,
- int idx = 0);
-
-//
// YAML utils
//
diff --git a/common/sampling.cpp b/common/sampling.cpp
new file mode 100644
index 00000000..8ce41945
--- /dev/null
+++ b/common/sampling.cpp
@@ -0,0 +1,166 @@
+#include "sampling.h"
+
+llama_sampling_context::~llama_sampling_context() {
+ for (auto & it : sequence_contexts) {
+ if (it.second.grammar != NULL) {
+ llama_grammar_free(it.second.grammar);
+ it.second.grammar = NULL;
+ }
+ }
+}
+
+llama_sampling_context llama_sampling_context_init(
+ const struct gpt_params & params,
+ llama_grammar * grammar) {
+ llama_sampling_context result;
+
+ result.params = params.sampling_params;
+ result.grammar = grammar;
+ return result;
+}
+
+// Note: Creates the context if it doesn't exist, so this always return something.
+llama_sampler_sequence_context & llama_sampling_get_sequence_context(
+ llama_sampling_context & ctx_sampling,
+ const llama_seq_id seq) {
+ const auto it = ctx_sampling.sequence_contexts.find(seq);
+ if (it != ctx_sampling.sequence_contexts.end()) {
+ return it->second;
+ }
+ llama_sampler_sequence_context new_ctx = {
+ 2.0f * ctx_sampling.params.mirostat_tau,
+ ctx_sampling.grammar != NULL ? llama_grammar_copy(ctx_sampling.grammar) : NULL,
+ };
+ return ctx_sampling.sequence_contexts.insert({seq, new_ctx}).first->second;
+}
+
+bool llama_sampling_context_reset(
+ llama_sampling_context & ctx_sampling,
+ const llama_seq_id seq) {
+ const auto it = ctx_sampling.sequence_contexts.find(seq);
+ if (it == ctx_sampling.sequence_contexts.end()) return false;
+ if (it->second.grammar != NULL) {
+ llama_grammar_free(it->second.grammar);
+ it->second.grammar = NULL;
+ }
+ ctx_sampling.sequence_contexts.erase(it);
+ return true;
+}
+
+llama_token llama_sampling_sample(
+ struct llama_context * ctx,
+ struct llama_context * ctx_guidance,
+ struct llama_sampling_context & ctx_sampling,
+ const std::vector<llama_token> & last_tokens,
+ std::vector<llama_token_data> & candidates,
+ const int idx,
+ llama_seq_id seq) {
+ const int n_ctx = llama_n_ctx(ctx);
+ const int n_vocab = llama_n_vocab(llama_get_model(ctx));
+
+ const llama_sampling_params & params = ctx_sampling.params;
+ const float temp = params.temp;
+ const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
+ const float top_p = params.top_p;
+ const float tfs_z = params.tfs_z;
+ const float typical_p = params.typical_p;
+ const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
+ const float repeat_penalty = params.repeat_penalty;
+ const float alpha_presence = params.presence_penalty;
+ const float alpha_frequency = params.frequency_penalty;
+ const int mirostat = params.mirostat;
+ const float mirostat_tau = params.mirostat_tau;
+ const float mirostat_eta = params.mirostat_eta;
+ const bool penalize_nl = params.penalize_nl;
+
+ llama_token id = 0;
+
+ float * logits = llama_get_logits_ith(ctx, idx);
+
+ // Apply params.logit_bias map
+ for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
+ logits[it->first] += it->second;
+ }
+
+ candidates.clear();
+ for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
+ candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
+ }
+
+ llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
+
+ if (ctx_guidance) {
+ llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
+ }
+
+ // apply penalties
+ if (!last_tokens.empty()) {
+ const float nl_logit = logits[llama_token_nl(ctx)];
+ const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
+
+ llama_sample_repetition_penalty(ctx, &cur_p,
+ last_tokens.data() + last_tokens.size() - last_n_repeat,
+ last_n_repeat, repeat_penalty);
+ llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
+ last_tokens.data() + last_tokens.size() - last_n_repeat,
+ last_n_repeat, alpha_frequency, alpha_presence);
+
+ if (!penalize_nl) {
+ for (size_t idx = 0; idx < cur_p.size; idx++) {
+ if (cur_p.data[idx].id == llama_token_nl(ctx)) {
+ cur_p.data[idx].logit = nl_logit;
+ break;
+ }
+ }
+ }
+ }
+
+ llama_sampler_sequence_context & ctx_seq = llama_sampling_get_sequence_context(ctx_sampling, seq);
+
+ if (ctx_seq.grammar != NULL) {
+ llama_sample_grammar(ctx, &cur_p, ctx_seq.grammar);
+ }
+
+ if (temp <= 0) {
+ // Greedy sampling
+ id = llama_sample_token_greedy(ctx, &cur_p);
+ } else {
+ if (mirostat == 1) {
+ const int mirostat_m = 100;
+ llama_sample_temp(ctx, &cur_p, temp);
+ id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_seq.mirostat_mu);
+ } else if (mirostat == 2) {
+ llama_sample_temp(ctx, &cur_p, temp);
+ id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &ctx_seq.mirostat_mu);
+ } else {
+ // Temperature sampling
+ size_t min_keep = std::max(1, params.n_probs);
+ llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
+ llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
+ llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
+ llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
+ llama_sample_temp(ctx, &cur_p, temp);
+
+ {
+ const int n_top = 10;
+ LOG("top %d candidates:\n", n_top);
+
+ for (int i = 0; i < n_top; i++) {
+ const llama_token id = cur_p.data[i].id;
+ (void)id; // To avoid a warning that id is unused when logging is disabled.
+ LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
+ }
+ }
+
+ id = llama_sample_token(ctx, &cur_p);
+
+ LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
+ }
+ }
+
+ if (ctx_seq.grammar != NULL) {
+ llama_grammar_accept_token(ctx, ctx_seq.grammar, id);
+ }
+
+ return id;
+}
diff --git a/common/sampling.h b/common/sampling.h
new file mode 100644
index 00000000..0aab5d03
--- /dev/null
+++ b/common/sampling.h
@@ -0,0 +1,108 @@
+#pragma once
+
+#include "llama.h"
+
+#include <string>
+#include <vector>
+#include <unordered_map>
+
+// sampling parameters
+typedef struct llama_sampling_params {
+ int32_t top_k = 40; // <= 0 to use vocab size
+ float top_p = 0.95f; // 1.0 = disabled
+ float tfs_z = 1.00f; // 1.0 = disabled
+ float typical_p = 1.00f; // 1.0 = disabled
+ float temp = 0.80f; // 1.0 = disabled
+ float repeat_penalty = 1.10f; // 1.0 = disabled
+ int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
+ float frequency_penalty = 0.00f; // 0.0 = disabled
+ float presence_penalty = 0.00f; // 0.0 = disabled
+ int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
+ float mirostat_tau = 5.00f; // target entropy
+ float mirostat_eta = 0.10f; // learning rate
+
+ bool penalize_nl = true; // consider newlines as a repeatable token
+
+ int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
+
+ // Classifier-Free Guidance
+ // https://arxiv.org/abs/2306.17806
+ std::string cfg_negative_prompt; // string to help guidance
+ float cfg_scale = 1.f; // How strong is guidance
+
+ std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
+
+} llama_sampling_params;
+
+// per-sequence sampler context
+typedef struct llama_sampler_sequence_context {
+ float mirostat_mu; // mirostat sampler state
+ llama_grammar * grammar;
+} llama_sampler_sequence_context;
+
+// general sampler context
+typedef struct llama_sampling_context {
+ ~llama_sampling_context();
+
+ // parameters that will be used for sampling and when creating
+ // new llama_sampler_sequence_context instances
+ llama_sampling_params params;
+
+ // map of sequence ids to sampler contexts
+ std::unordered_map<llama_seq_id, llama_sampler_sequence_context> sequence_contexts;
+
+ // when non-NULL, new instances of llama_sampler_sequence_context
+ // will get a copy of the grammar here
+ // note: only the pointer is stored here, it is not a copy of
+ // the grammar and shouldn't be freed
+ llama_grammar * grammar;
+} llama_sampling_context;
+
+#include "common.h"
+
+// Create a new sampling context instance.
+llama_sampling_context llama_sampling_context_init(
+ const struct gpt_params & params,
+ llama_grammar * grammar = NULL);
+
+// Fetches the sampler context for the specified sequence id (defaults to 0).
+// If the context for that sequence id doesn't already exist, it will be created with
+// default values based on the parameters in the ctx_sampling argument.
+llama_sampler_sequence_context & llama_sampling_get_sequence_context(
+ llama_sampling_context & ctx_sampling,
+ const llama_seq_id seq = 0);
+
+// Reset the sampler context for the supplied sequence id (defaults to 0).
+// This is necessary to reuse a sequence id or free memory used by sequences
+// that are no longer required.
+bool llama_sampling_context_reset(
+ llama_sampling_context & ctx_sampling,
+ const llama_seq_id seq = 0);
+
+// this is a common sampling function used across the examples for convenience
+// it can serve as a starting point for implementing your own sampling function
+// Note: When using multiple sequences, it is the caller's responsibility to call
+// llama_sampling_context_reset when a sequence ends
+//
+// required:
+// - ctx: context to use for sampling
+// - ctx_sampling: sampling-specific context
+//
+// optional:
+// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
+// - last_tokens: needed for repetition penalty, ignore if empty
+// - idx: sample from llama_get_logits_ith(ctx, idx)
+// - seq: sequence id to associate sampler state with
+//
+// returns:
+// - token: sampled token
+// - candidates: vector of candidate tokens
+//
+llama_token llama_sampling_sample(
+ struct llama_context * ctx,
+ struct llama_context * ctx_guidance,
+ struct llama_sampling_context & ctx_sampling,
+ const std::vector<llama_token> & last_tokens,
+ std::vector<llama_token_data> & candidates,
+ const int idx = 0,
+ llama_seq_id seq = 0);