summaryrefslogtreecommitdiff
path: root/convert-baichuan-hf-to-gguf.py
diff options
context:
space:
mode:
Diffstat (limited to 'convert-baichuan-hf-to-gguf.py')
-rwxr-xr-xconvert-baichuan-hf-to-gguf.py292
1 files changed, 292 insertions, 0 deletions
diff --git a/convert-baichuan-hf-to-gguf.py b/convert-baichuan-hf-to-gguf.py
new file mode 100755
index 00000000..5b301de2
--- /dev/null
+++ b/convert-baichuan-hf-to-gguf.py
@@ -0,0 +1,292 @@
+#!/usr/bin/env python3
+# HF baichuan --> gguf conversion
+
+from __future__ import annotations
+
+import argparse
+import json
+import os
+import struct
+import sys
+from pathlib import Path
+from typing import TYPE_CHECKING, Any
+import itertools
+import gguf
+import numpy as np
+import torch
+from sentencepiece import SentencePieceProcessor # type: ignore[import]
+
+
+if TYPE_CHECKING:
+ from typing import TypeAlias
+
+NDArray: TypeAlias = 'np.ndarray[Any, Any]'
+
+# reverse HF permute back to original pth layout
+
+
+def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray:
+ if n_kv_head is not None and n_head != n_kv_head:
+ n_head //= n_kv_head
+
+ return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+ .swapaxes(1, 2)
+ .reshape(weights.shape))
+
+def reverse_hf_permute_part(weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray:
+ r = weights.shape[0] // 3
+ return (reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
+
+def reverse_hf_part(weights: NDArray, n_part: int) -> NDArray:
+ r = weights.shape[0] // 3
+ return weights[r * n_part : r * n_part + r, ...]
+
+def count_model_parts(dir_model: str) -> int:
+ num_parts = 0
+
+ for filename in os.listdir(dir_model):
+ if filename.startswith("pytorch_model-"):
+ num_parts += 1
+
+ if num_parts > 0:
+ print("gguf: found " + str(num_parts) + " model parts")
+
+ return num_parts
+
+
+
+def parse_args() -> argparse.Namespace:
+ parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file")
+ parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
+ parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
+ parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
+ parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1)
+ return parser.parse_args()
+
+args = parse_args()
+
+dir_model = args.model
+ftype = args.ftype
+if not dir_model.is_dir():
+ print(f'Error: {args.model} is not a directory', file = sys.stderr)
+ sys.exit(1)
+
+# possible tensor data types
+# ftype == 0 -> float32
+# ftype == 1 -> float16
+
+# map from ftype to string
+ftype_str = ["f32", "f16"]
+
+if args.outfile is not None:
+ fname_out = args.outfile
+else:
+ # output in the same directory as the model by default
+ fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
+
+print("gguf: loading model "+dir_model.name)
+
+with open(dir_model / "config.json", "r", encoding="utf-8") as f:
+ hparams = json.load(f)
+print("hello print: ",hparams["architectures"][0])
+if hparams["architectures"][0] != "BaichuanForCausalLM":
+ print("Model architecture not supported: " + hparams["architectures"][0])
+
+ sys.exit()
+
+# get number of model parts
+num_parts = count_model_parts(dir_model)
+print(f"num_parts:{num_parts}\n")
+ARCH=gguf.MODEL_ARCH.BAICHUAN
+gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
+
+print("gguf: get model metadata")
+
+block_count = hparams["num_hidden_layers"]
+head_count = hparams["num_attention_heads"]
+
+if "num_key_value_heads" in hparams:
+ head_count_kv = hparams["num_key_value_heads"]
+else:
+ head_count_kv = head_count
+
+if "_name_or_path" in hparams:
+ hf_repo = hparams["_name_or_path"]
+else:
+ hf_repo = ""
+
+if "max_sequence_length" in hparams:
+ ctx_length = hparams["max_sequence_length"]
+elif "max_position_embeddings" in hparams:
+ ctx_length = hparams["max_position_embeddings"]
+elif "model_max_length" in hparams:
+ ctx_length = hparams["model_max_length"]
+else:
+ print("gguf: can not find ctx length parameter.")
+
+ sys.exit()
+
+
+gguf_writer.add_name(dir_model.name)
+gguf_writer.add_source_hf_repo(hf_repo)
+gguf_writer.add_tensor_data_layout("Meta AI original pth")
+gguf_writer.add_context_length(ctx_length)
+gguf_writer.add_embedding_length(hparams["hidden_size"])
+gguf_writer.add_block_count(block_count)
+gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
+gguf_writer.add_head_count(head_count)
+gguf_writer.add_head_count_kv(head_count_kv)
+gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
+
+if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
+ if "type" in hparams["rope_scaling"]:
+ if hparams["rope_scaling"]["type"] == "linear":
+ gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
+
+
+# TOKENIZATION
+
+print("gguf: get tokenizer metadata")
+
+tokens: list[bytes] = []
+scores: list[float] = []
+toktypes: list[int] = []
+
+tokenizer_model_file = dir_model / 'tokenizer.model'
+if not tokenizer_model_file.is_file():
+ print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
+ sys.exit(1)
+
+# vocab type sentencepiece
+print("gguf: get sentencepiece tokenizer vocab, scores and token types")
+
+tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
+
+for i in range(tokenizer.vocab_size()):
+ text: bytes
+ score: float
+
+ piece = tokenizer.id_to_piece(i)
+ text = piece.encode("utf-8")
+ score = tokenizer.get_score(i)
+
+ toktype = 1 # defualt to normal token type
+ if tokenizer.is_unknown(i):
+ toktype = 2
+ if tokenizer.is_control(i):
+ toktype = 3
+
+ # toktype = 4 is user-defined = tokens from added_tokens.json
+
+ if tokenizer.is_unused(i):
+ toktype = 5
+ if tokenizer.is_byte(i):
+ toktype = 6
+
+ tokens.append(text)
+ scores.append(score)
+ toktypes.append(toktype)
+
+added_tokens_file = dir_model / 'added_tokens.json'
+if added_tokens_file.is_file():
+ with open(added_tokens_file, "r", encoding="utf-8") as f:
+ addtokens_json = json.load(f)
+
+ print("gguf: get added tokens")
+
+ for key in addtokens_json:
+ tokens.append( key.encode("utf-8") )
+ scores.append(-1000.0)
+ toktypes.append(4) # user-defined token type
+
+
+gguf_writer.add_tokenizer_model("llama")
+gguf_writer.add_token_list(tokens)
+gguf_writer.add_token_scores(scores)
+gguf_writer.add_token_types(toktypes)
+
+special_vocab = gguf.SpecialVocab(dir_model)
+special_vocab.add_to_gguf(gguf_writer)
+
+# TENSORS
+
+tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
+
+# tensor info
+print("gguf: get tensor metadata")
+
+if num_parts == 0:
+ part_names = iter(("pytorch_model.bin",))
+else:
+ part_names = (
+ f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
+ )
+
+
+for part_name in part_names:
+ if args.vocab_only:
+ break
+ print("gguf: loading model part '" + part_name + "'")
+ model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
+
+ tmp=model_part
+ for i in range(block_count):
+ if f"model.layers.{i}.self_attn.W_pack.weight" in model_part:
+ print(f"Unpacking and permuting layer {i}")
+ tmp[f"model.layers.{i}.self_attn.q_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count)
+ tmp[f"model.layers.{i}.self_attn.k_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv)
+ tmp[f"model.layers.{i}.self_attn.v_proj.weight"]=reverse_hf_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],2)
+ del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
+
+ for name in model_part.keys():
+ data = model_part[name]
+ # we don't need these
+ if name.endswith(".rotary_emb.inv_freq"):
+ continue
+
+ old_dtype = data.dtype
+
+ # convert any unsupported data types to float32
+ if data.dtype != torch.float16 and data.dtype != torch.float32:
+ data = data.to(torch.float32)
+
+ data = data.squeeze().numpy()
+
+ # map tensor names
+ new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
+ if new_name is None:
+ print("Can not map tensor '" + name + "'")
+ sys.exit()
+
+ n_dims = len(data.shape)
+ data_dtype = data.dtype
+
+ # if f32 desired, convert any float16 to float32
+ if ftype == 0 and data_dtype == np.float16:
+ data = data.astype(np.float32)
+
+ # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+ if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+ data = data.astype(np.float32)
+
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
+ if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+ data = data.astype(np.float16)
+
+ print(name + " -> " + new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
+ gguf_writer.add_tensor(new_name, data)
+
+
+print("gguf: write header")
+gguf_writer.write_header_to_file()
+print("gguf: write metadata")
+gguf_writer.write_kv_data_to_file()
+if not args.vocab_only:
+ print("gguf: write tensors")
+ gguf_writer.write_tensors_to_file()
+
+gguf_writer.close()
+
+print(f"gguf: model successfully exported to '{fname_out}'")
+print("")