summaryrefslogtreecommitdiff
path: root/convert-bloom-hf-to-gguf.py
diff options
context:
space:
mode:
Diffstat (limited to 'convert-bloom-hf-to-gguf.py')
-rwxr-xr-xconvert-bloom-hf-to-gguf.py247
1 files changed, 0 insertions, 247 deletions
diff --git a/convert-bloom-hf-to-gguf.py b/convert-bloom-hf-to-gguf.py
deleted file mode 100755
index 6e866d94..00000000
--- a/convert-bloom-hf-to-gguf.py
+++ /dev/null
@@ -1,247 +0,0 @@
-#!/usr/bin/env python3
-# HF bloom --> gguf conversion
-
-from __future__ import annotations
-
-import argparse
-import json
-import os
-import re
-import struct
-import sys
-from pathlib import Path
-from typing import Any
-
-import numpy as np
-import torch
-from transformers import AutoTokenizer # type: ignore[import]
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-
-def count_model_parts(dir_model: Path) -> int:
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.startswith("pytorch_model-"):
- num_parts += 1
-
- if num_parts > 0:
- print("gguf: found " + str(num_parts) + " model parts")
- return num_parts
-
-
-# Supported Models:
-# https://huggingface.co/bigscience/bloom-1b7
-# https://huggingface.co/bigscience/bloom-3b
-# https://huggingface.co/bigscience/bloom-7b1
-# https://huggingface.co/Langboat/bloom-1b4-zh
-def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(description="Convert a Bloom model to a GGML compatible file")
- parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
- parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
- parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
- parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
- return parser.parse_args()
-
-args = parse_args()
-
-dir_model = args.model
-ftype = args.ftype
-if not dir_model.is_dir():
- print(f'Error: {args.model} is not a directory', file = sys.stderr)
- sys.exit(1)
-
-# possible tensor data types
-# ftype == 0 -> float32
-# ftype == 1 -> float16
-
-# map from ftype to string
-ftype_str = ["f32", "f16"]
-
-if args.outfile is not None:
- fname_out = args.outfile
-else:
- # output in the same directory as the model by default
- fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-
-print("gguf: loading model "+dir_model.name)
-
-with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- hparams = json.load(f)
-
-if hparams["architectures"][0] != "BloomForCausalLM":
- print("Model architecture not supported: " + hparams["architectures"][0])
- sys.exit(1)
-
-# get number of model parts
-num_parts = count_model_parts(dir_model)
-
-ARCH=gguf.MODEL_ARCH.BLOOM
-gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
-
-print("gguf: get model metadata")
-
-block_count = hparams["n_layer"]
-
-gguf_writer.add_name("Bloom")
-n_embed = hparams.get("hidden_size", hparams.get("n_embed"))
-n_head = hparams.get("n_head", hparams.get("num_attention_heads"))
-gguf_writer.add_context_length(hparams.get("seq_length", n_embed))
-gguf_writer.add_embedding_length(n_embed)
-gguf_writer.add_feed_forward_length(4 * n_embed)
-gguf_writer.add_block_count(block_count)
-gguf_writer.add_head_count(n_head)
-gguf_writer.add_head_count_kv(n_head)
-gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
-gguf_writer.add_file_type(ftype)
-
-# TOKENIZATION
-
-print("gguf: get tokenizer metadata")
-
-tokens: list[bytearray] = []
-scores: list[float] = []
-toktypes: list[int] = []
-
-# gpt2 tokenizer
-gguf_writer.add_tokenizer_model("gpt2")
-
-print("gguf: get gpt2 tokenizer vocab")
-
-# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
-tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
-# The number of tokens in tokenizer.json can differ from the expected vocab size.
-# This causes downstream issues with mismatched tensor sizes when running the inference
-vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
-assert max(tokenizer.vocab.values()) < vocab_size
-
-added_vocab = tokenizer.get_added_vocab()
-reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-
-for i in range(vocab_size):
- if i not in reverse_vocab:
- tokens.append(f"[PAD{i}]")
- toktypes.append(gguf.TokenType.USER_DEFINED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- if tokenizer.added_tokens_decoder[i].special:
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- toktypes.append(gguf.TokenType.USER_DEFINED)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
-
-gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_types(toktypes)
-
-special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
-special_vocab.add_to_gguf(gguf_writer)
-
-# TENSORS
-
-tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
-
-# params for qkv transform
-n_head_kv = hparams.get("n_head_kv", n_head)
-head_dim = n_embed // n_head
-
-# tensor info
-print("gguf: get tensor metadata")
-
-if num_parts == 0:
- part_names = iter(("pytorch_model.bin",))
-else:
- part_names = (
- f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
- )
-
-for part_name in part_names:
- if args.vocab_only:
- break
- print("gguf: loading model part '" + part_name + "'")
- model_part = torch.load(dir_model / part_name, map_location="cpu")
-
- has_lm_head = True
- if "lm_head.weight" not in model_part.keys() and "output.weight" not in model_part.keys():
- has_lm_head = False
-
- for original_name in model_part.keys():
- data = model_part[original_name]
- name = re.sub(r'transformer\.', '', original_name)
-
- old_dtype = data.dtype
-
- # convert any unsupported data types to float32
- if data.dtype != torch.float16 and data.dtype != torch.float32:
- data = data.to(torch.float32)
-
- data = data.squeeze().numpy()
-
- if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
- # Map bloom-style qkv_linear to gpt-style qkv_linear
- # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
- # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
- qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
- data = np.concatenate(
- (qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 2, :, :].reshape((-1, n_embed))),
- axis=0
- )
- print("re-format attention.linear_qkv.weight")
- elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
- qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
- data = np.concatenate(
- (qkv_bias[:, 0, :].reshape((n_embed,)),
- qkv_bias[:, 1, :].reshape((n_embed,)),
- qkv_bias[:, 2, :].reshape((n_embed,))),
- axis=0
- )
- print("re-format attention.linear_qkv.bias")
-
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print("Can not map tensor '" + name + "'")
- sys.exit()
-
- n_dims = len(data.shape)
- data_dtype = data.dtype
-
- # if f32 desired, convert any float16 to float32
- if ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
-
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
-
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
-
- print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
-
- gguf_writer.add_tensor(new_name, data)
-
- if not has_lm_head and name == "word_embeddings.weight":
- gguf_writer.add_tensor("output.weight", data)
- print(name, "=>", "output.weight" + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) # noqa
-
-
-print("gguf: write header")
-gguf_writer.write_header_to_file()
-print("gguf: write metadata")
-gguf_writer.write_kv_data_to_file()
-if not args.vocab_only:
- print("gguf: write tensors")
- gguf_writer.write_tensors_to_file()
-
-gguf_writer.close()
-
-print(f"gguf: model successfully exported to '{fname_out}'")
-print("")