summaryrefslogtreecommitdiff
path: root/convert-gptneox-hf-to-gguf.py
diff options
context:
space:
mode:
Diffstat (limited to 'convert-gptneox-hf-to-gguf.py')
-rw-r--r--convert-gptneox-hf-to-gguf.py266
1 files changed, 266 insertions, 0 deletions
diff --git a/convert-gptneox-hf-to-gguf.py b/convert-gptneox-hf-to-gguf.py
new file mode 100644
index 00000000..a7cefc6f
--- /dev/null
+++ b/convert-gptneox-hf-to-gguf.py
@@ -0,0 +1,266 @@
+# HF gptneox--> gguf conversion
+
+import gguf
+import os
+import sys
+import struct
+import json
+import numpy as np
+import torch
+
+from typing import Any, List
+from pathlib import Path
+from transformers import AutoTokenizer
+
+# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
+
+
+def bytes_to_unicode():
+ """
+ Returns list of utf-8 byte and a corresponding list of unicode strings.
+ The reversible bpe codes work on unicode strings.
+ This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
+ When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
+ This is a significant percentage of your normal, say, 32K bpe vocab.
+ To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
+ And avoids mapping to whitespace/control characters the bpe code barfs on.
+ """
+ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
+ cs = bs[:]
+ n = 0
+ for b in range(2**8):
+ if b not in bs:
+ bs.append(b)
+ cs.append(2**8+n)
+ n += 1
+ cs = [chr(n) for n in cs]
+ return dict(zip(bs, cs))
+
+
+def count_model_parts(dir_model: str) -> int:
+ num_parts = 0
+ for filename in os.listdir(dir_model):
+ if filename.startswith("pytorch_model-"):
+ num_parts += 1
+
+ if num_parts > 0:
+ print("gguf: found " + str(num_parts) + " model parts")
+ return num_parts
+
+
+if len(sys.argv) < 3:
+ print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
+ print(" ftype == 0 -> float32")
+ print(" ftype == 1 -> float16")
+ sys.exit(1)
+
+
+# output in the same directory as the model
+dir_model = sys.argv[1]
+last_dir = os.path.basename(os.path.normpath(dir_model))
+
+# possible tensor data types
+# ftype == 0 -> float32
+# ftype == 1 -> float16
+
+# map from ftype to string
+ftype_str = ["f32", "f16"]
+
+ftype = 1
+if len(sys.argv) > 2:
+ ftype = int(sys.argv[2])
+ if ftype < 0 or ftype > 1:
+ print("Invalid ftype: " + str(ftype))
+
+ sys.exit(1)
+
+fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
+
+print("gguf: loading model "+last_dir)
+
+with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
+ hparams = json.load(f)
+
+if hparams["architectures"][0] != "GPTNeoXForCausalLM":
+ print("Model architecture not supported: " + hparams["architectures"][0])
+
+ sys.exit()
+
+# get number of model parts
+num_parts = count_model_parts(dir_model)
+
+ARCH=gguf.MODEL_ARCH.GPTNEOX
+gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
+
+print("gguf: get model metadata")
+
+block_count = hparams["num_hidden_layers"]
+
+gguf_writer.add_name(last_dir)
+gguf_writer.add_context_length(hparams["max_position_embeddings"])
+gguf_writer.add_embedding_length(hparams["hidden_size"])
+gguf_writer.add_block_count(block_count)
+gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
+gguf_writer.add_head_count(hparams["num_attention_heads"])
+gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
+gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
+
+# TOKENIZATION
+
+print("gguf: get tokenizer metadata")
+
+tokens: List[str] = []
+merges: List[str] = []
+
+
+if Path(dir_model + "/tokenizer.json").is_file():
+ # gpt2 tokenizer
+ gguf_writer.add_tokenizer_model("gpt2")
+
+ print("gguf: get gpt2 tokenizer merges")
+
+ with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
+ tokenizer_json = json.load(f)
+ merges = tokenizer_json["model"]["merges"]
+
+ gguf_writer.add_token_merges(merges)
+
+ print("gguf: get gpt2 tokenizer vocab")
+
+ vocab_size = len(tokenizer_json["model"]["vocab"])
+
+ # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
+ tokenizer = AutoTokenizer.from_pretrained(dir_model)
+
+ reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
+ byte_encoder = bytes_to_unicode()
+ byte_decoder = {v: k for k, v in byte_encoder.items()}
+
+ for i in range(vocab_size):
+ if i in reverse_vocab:
+ try:
+ text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
+ except KeyError:
+ text = bytearray()
+ for c in reverse_vocab[i]:
+ if ord(c) < 256: # single byte character
+ text.append(byte_decoder[ord(c)])
+ else: # multibyte special token character
+ text.extend(c.encode('utf-8'))
+ else:
+ print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
+ pad_token = f"[PAD{i}]".encode("utf8")
+ text = bytearray(pad_token)
+
+ tokens.append(text)
+
+ gguf_writer.add_token_list(tokens)
+
+ if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file():
+ print("gguf: get special token ids")
+
+ with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
+ tokenizer_config = json.load(f)
+
+ # find special token ids
+
+ if "bos_token" in tokenizer_config:
+ for key in tokenizer_json["added_tokens"]:
+ if key["content"] == tokenizer_config["bos_token"]:
+ gguf_writer.add_bos_token_id(key["id"])
+
+ if "eos_token" in tokenizer_config:
+ for key in tokenizer_json["added_tokens"]:
+ if key["content"] == tokenizer_config["eos_token"]:
+ gguf_writer.add_eos_token_id(key["id"])
+
+ if "unk_token" in tokenizer_config:
+ for key in tokenizer_json["added_tokens"]:
+ if key["content"] == tokenizer_config["unk_token"]:
+ gguf_writer.add_unk_token_id(key["id"])
+
+ if "sep_token" in tokenizer_config:
+ for key in tokenizer_json["added_tokens"]:
+ if key["content"] == tokenizer_config["sep_token"]:
+ gguf_writer.add_sep_token_id(key["id"])
+
+ if "pad_token" in tokenizer_config:
+ for key in tokenizer_json["added_tokens"]:
+ if key["content"] == tokenizer_config["pad_token"]:
+ gguf_writer.add_pad_token_id(key["id"])
+
+
+# TENSORS
+
+tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
+
+# tensor info
+print("gguf: get tensor metadata")
+
+if num_parts == 0:
+ part_names = ("pytorch_model.bin",)
+else:
+ part_names = (
+ f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
+ )
+
+for part_name in part_names:
+ print("gguf: loading model part '" + part_name + "'")
+ model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
+
+ for name in model_part.keys():
+ data = model_part[name]
+
+ # we don't need these
+ if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
+ continue
+
+ old_dtype = data.dtype
+
+ # convert any unsupported data types to float32
+ if data.dtype != torch.float16 and data.dtype != torch.float32:
+ data = data.to(torch.float32)
+
+ data = data.squeeze().numpy()
+
+ # map tensor names
+ if name.endswith(".weight") and name[:-7] in tensor_map:
+ name = tensor_map[name[:-7]] + ".weight"
+ elif name.endswith(".bias") and name[:-5] in tensor_map:
+ name = tensor_map[name[:-5]] + ".bias"
+ else:
+ print("Can not map tensor '" + name + "'")
+ sys.exit()
+
+ n_dims = len(data.shape)
+ data_dtype = data.dtype
+
+ # if f32 desired, convert any float16 to float32
+ if ftype == 0 and data_dtype == np.float16:
+ data = data.astype(np.float32)
+
+ # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+ if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+ data = data.astype(np.float32)
+
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
+ if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+ data = data.astype(np.float16)
+
+ print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
+
+ gguf_writer.add_tensor(name, data)
+
+
+print("gguf: write header")
+gguf_writer.write_header_to_file()
+print("gguf: write metadata")
+gguf_writer.write_kv_data_to_file()
+print("gguf: write tensors")
+gguf_writer.write_tensors_to_file()
+
+gguf_writer.close()
+
+print("gguf: model successfully exported to '" + fname_out + "'")
+print("")