summaryrefslogtreecommitdiff
path: root/convert-gptneox-hf-to-gguf.py
diff options
context:
space:
mode:
Diffstat (limited to 'convert-gptneox-hf-to-gguf.py')
-rwxr-xr-xconvert-gptneox-hf-to-gguf.py48
1 files changed, 7 insertions, 41 deletions
diff --git a/convert-gptneox-hf-to-gguf.py b/convert-gptneox-hf-to-gguf.py
index 60679a2f..d4e85f51 100755
--- a/convert-gptneox-hf-to-gguf.py
+++ b/convert-gptneox-hf-to-gguf.py
@@ -19,29 +19,6 @@ if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
-# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
-
-
-def bytes_to_unicode():
- """
- Returns list of utf-8 byte and a corresponding list of unicode strings.
- The reversible bpe codes work on unicode strings.
- This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
- When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
- This is a significant percentage of your normal, say, 32K bpe vocab.
- To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
- And avoids mapping to whitespace/control characters the bpe code barfs on.
- """
- bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
- cs = bs[:]
- n = 0
- for b in range(2**8):
- if b not in bs:
- bs.append(b)
- cs.append(2**8+n)
- n += 1
- return dict(zip(bs, (chr(n) for n in cs)))
-
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
@@ -130,6 +107,8 @@ gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
+scores: list[float] = []
+toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
@@ -145,28 +124,15 @@ vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-byte_encoder = bytes_to_unicode()
-byte_decoder = {v: k for k, v in byte_encoder.items()}
for i in range(vocab_size):
- if i in reverse_vocab:
- try:
- text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
- except KeyError:
- text = bytearray()
- for c in reverse_vocab[i]:
- if ord(c) < 256: # single byte character
- text.append(byte_decoder[ord(c)])
- else: # multibyte special token character
- text.extend(c.encode('utf-8'))
- else:
- print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
- pad_token = f"[PAD{i}]".encode("utf8")
- text = bytearray(pad_token)
-
- tokens.append(text)
+ tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
+ scores.append(0.0) # dummy
+ toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
+gguf_writer.add_token_scores(scores)
+gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
special_vocab.add_to_gguf(gguf_writer)