diff options
Diffstat (limited to 'convert-hf-to-gguf-update.py')
-rw-r--r-- | convert-hf-to-gguf-update.py | 157 |
1 files changed, 82 insertions, 75 deletions
diff --git a/convert-hf-to-gguf-update.py b/convert-hf-to-gguf-update.py index b019c1e3..09772f66 100644 --- a/convert-hf-to-gguf-update.py +++ b/convert-hf-to-gguf-update.py @@ -21,6 +21,7 @@ # TODO: automate the update of convert-hf-to-gguf.py # +import logging import os import requests import sys @@ -28,12 +29,17 @@ import json from hashlib import sha256 from enum import IntEnum, auto +from transformers import AutoTokenizer + +logger = logging.getLogger("convert-hf-to-gguf-update") + class TOKENIZER_TYPE(IntEnum): SPM = auto() BPE = auto() WPM = auto() + # TODO: this string has to exercise as much pre-tokenizer functionality as possible # will be updated with time - contributions welcome chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' @@ -41,36 +47,38 @@ chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶 if len(sys.argv) == 2: token = sys.argv[1] else: - print("Usage: python convert-hf-to-gguf-update.py <huggingface_token>") + logger.info("Usage: python convert-hf-to-gguf-update.py <huggingface_token>") sys.exit(1) # TODO: add models here, base models preferred models = [ - { "name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", }, - { "name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", }, - { "name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", }, - { "name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", }, - { "name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", }, - { "name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", }, - { "name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", }, - { "name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", }, - { "name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", }, - { "name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", }, - ] + {"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", }, + {"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", }, + {"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", }, + {"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", }, + {"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", }, + {"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", }, + {"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", }, + {"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", }, + {"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", }, + {"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", }, +] # make directory "models/tokenizers" if it doesn't exist if not os.path.exists("models/tokenizers"): os.makedirs("models/tokenizers") + def download_file_with_auth(url, token, save_path): headers = {"Authorization": f"Bearer {token}"} response = requests.get(url, headers=headers) if response.status_code == 200: with open(save_path, 'wb') as f: f.write(response.content) - print(f"File {save_path} downloaded successfully") + logger.info(f"File {save_path} downloaded successfully") else: - print(f"Failed to download file. Status code: {response.status_code}") + logger.info(f"Failed to download file. Status code: {response.status_code}") + # download the tokenizer models for model in models: @@ -81,10 +89,10 @@ for model in models: if not os.path.exists(f"models/tokenizers/{name}"): os.makedirs(f"models/tokenizers/{name}") else: - print(f"Directory models/tokenizers/{name} already exists - skipping") + logger.info(f"Directory models/tokenizers/{name} already exists - skipping") continue - print(f"Downloading {name} to models/tokenizers/{name}") + logger.info(f"Downloading {name} to models/tokenizers/{name}") url = f"{repo}/raw/main/config.json" save_path = f"models/tokenizers/{name}/config.json" @@ -115,76 +123,76 @@ for model in models: continue # create the tokenizer - from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") chktok = tokenizer.encode(chktxt) chkhsh = sha256(str(chktok).encode()).hexdigest() - print(f"model: {name}") - print(f"tokt: {tokt}") - print(f"repo: {model['repo']}") - print(f"chktok: {chktok}") - print(f"chkhsh: {chkhsh}") + logger.info(f"model: {name}") + logger.info(f"tokt: {tokt}") + logger.info(f"repo: {model['repo']}") + logger.info(f"chktok: {chktok}") + logger.info(f"chkhsh: {chkhsh}") # print the "pre_tokenizer" content from the tokenizer.json with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f: cfg = json.load(f) pre_tokenizer = cfg["pre_tokenizer"] - print("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4)) + logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4)) - print(f"\n") + logger.info("") src_ifs += f" if chkhsh == \"{chkhsh}\":\n" src_ifs += f" # ref: {model['repo']}\n" src_ifs += f" res = \"{name}\"\n" -src_func = "" -src_func += " def get_vocab_base_pre(self, tokenizer) -> str:\n" -src_func += " # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that\n" -src_func += " # is specific for the BPE pre-tokenizer used by the model\n" -src_func += " # we will use this unique identifier to write a \"tokenizer.ggml.pre\" entry in the GGUF file which we can\n" -src_func += " # use in llama.cpp to implement the same pre-tokenizer\n" -src_func += "\n" -src_func += f" chktxt = {repr(chktxt)}\n" -src_func += "\n" -src_func += " chktok = tokenizer.encode(chktxt)\n" -src_func += " chkhsh = sha256(str(chktok).encode()).hexdigest()\n" -src_func += "\n" -src_func += " print(f\"chktok: {chktok}\")\n" -src_func += " print(f\"chkhsh: {chkhsh}\")\n" -src_func += "\n" -src_func += " res = None\n" -src_func += "\n" -src_func += " # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script\n" -src_func += " # or pull the latest version of the model from Huggingface\n" -src_func += " # don't edit the hashes manually!\n" -src_func += f"{src_ifs}\n" -src_func += " if res is None:\n" -src_func += " print(\"\\n\")\n" -src_func += " print(\"**************************************************************************************\")\n" -src_func += " print(\"** WARNING: The BPE pre-tokenizer was not recognized!\")\n" -src_func += " print(\"** There are 2 possible reasons for this:\")\n" -src_func += " print(\"** - the model has not been added to convert-hf-to-gguf-update.py yet\")\n" -src_func += " print(\"** - the pre-tokenization config has changed upstream\")\n" -src_func += " print(\"** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.\")\n" -src_func += " print(\"** ref: https://github.com/ggerganov/llama.cpp/pull/6920\")\n" -src_func += " print(\"**\")\n" -src_func += " print(f\"** chkhsh: {chkhsh}\")\n" -src_func += " print(\"**************************************************************************************\")\n" -src_func += " print(\"\\n\")\n" -src_func += " raise NotImplementedError(\"BPE pre-tokenizer was not recognized - update get_vocab_base_pre()\")\n" -src_func += "\n" -src_func += " print(f\"tokenizer.ggml.pre: {res}\")\n" -src_func += " print(f\"chkhsh: {chkhsh}\")\n" -src_func += "\n" -src_func += " return res\n" - -print(src_func) - -print("\n") -print("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!") -print("\n") +src_func = f""" + def get_vocab_base_pre(self, tokenizer) -> str: + # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that + # is specific for the BPE pre-tokenizer used by the model + # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can + # use in llama.cpp to implement the same pre-tokenizer + + chktxt = {repr(chktxt)} + + chktok = tokenizer.encode(chktxt) + chkhsh = sha256(str(chktok).encode()).hexdigest() + + print(f"chktok: {{chktok}}") + print(f"chkhsh: {{chkhsh}}") + + res = None + + # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script + # or pull the latest version of the model from Huggingface + # don't edit the hashes manually! +{src_ifs} + if res is None: + print("\\n") + print("**************************************************************************************") + print("** WARNING: The BPE pre-tokenizer was not recognized!") + print("** There are 2 possible reasons for this:") + print("** - the model has not been added to convert-hf-to-gguf-update.py yet") + print("** - the pre-tokenization config has changed upstream") + print("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.") + print("** ref: https://github.com/ggerganov/llama.cpp/pull/6920") + print("**") + print(f"** chkhsh: {{chkhsh}}") + print("**************************************************************************************") + print("\\n") + raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()") + + print(f"tokenizer.ggml.pre: {{repr(res)}}") + print(f"chkhsh: {{chkhsh}}") + + return res +""" + +print(src_func) # noqa: NP100 + +logger.info("\n") +logger.info("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!") +logger.info("\n") # generate tests for each tokenizer model @@ -250,7 +258,6 @@ for model in models: tokt = model["tokt"] # create the tokenizer - from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f: @@ -265,15 +272,15 @@ for model in models: f.write(f" {r}") f.write("\n") - print(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*") + logger.info(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*") # generate commands for creating vocab files -print("\nRun the following commands to generate the vocab files for testing:\n") +logger.info("\nRun the following commands to generate the vocab files for testing:\n") for model in models: name = model["name"] - print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") + logger.info(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") -print("\n") +logger.info("\n") |