summaryrefslogtreecommitdiff
path: root/convert-hf-to-gguf-update.py
diff options
context:
space:
mode:
Diffstat (limited to 'convert-hf-to-gguf-update.py')
-rw-r--r--convert-hf-to-gguf-update.py157
1 files changed, 82 insertions, 75 deletions
diff --git a/convert-hf-to-gguf-update.py b/convert-hf-to-gguf-update.py
index b019c1e3..09772f66 100644
--- a/convert-hf-to-gguf-update.py
+++ b/convert-hf-to-gguf-update.py
@@ -21,6 +21,7 @@
# TODO: automate the update of convert-hf-to-gguf.py
#
+import logging
import os
import requests
import sys
@@ -28,12 +29,17 @@ import json
from hashlib import sha256
from enum import IntEnum, auto
+from transformers import AutoTokenizer
+
+logger = logging.getLogger("convert-hf-to-gguf-update")
+
class TOKENIZER_TYPE(IntEnum):
SPM = auto()
BPE = auto()
WPM = auto()
+
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
# will be updated with time - contributions welcome
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
@@ -41,36 +47,38 @@ chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍
if len(sys.argv) == 2:
token = sys.argv[1]
else:
- print("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
+ logger.info("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
sys.exit(1)
# TODO: add models here, base models preferred
models = [
- { "name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
- { "name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
- { "name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
- { "name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
- { "name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
- { "name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
- { "name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
- { "name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
- { "name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
- { "name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
- ]
+ {"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
+ {"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
+ {"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
+ {"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
+ {"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
+ {"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
+ {"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
+ {"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
+ {"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
+ {"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
+]
# make directory "models/tokenizers" if it doesn't exist
if not os.path.exists("models/tokenizers"):
os.makedirs("models/tokenizers")
+
def download_file_with_auth(url, token, save_path):
headers = {"Authorization": f"Bearer {token}"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
with open(save_path, 'wb') as f:
f.write(response.content)
- print(f"File {save_path} downloaded successfully")
+ logger.info(f"File {save_path} downloaded successfully")
else:
- print(f"Failed to download file. Status code: {response.status_code}")
+ logger.info(f"Failed to download file. Status code: {response.status_code}")
+
# download the tokenizer models
for model in models:
@@ -81,10 +89,10 @@ for model in models:
if not os.path.exists(f"models/tokenizers/{name}"):
os.makedirs(f"models/tokenizers/{name}")
else:
- print(f"Directory models/tokenizers/{name} already exists - skipping")
+ logger.info(f"Directory models/tokenizers/{name} already exists - skipping")
continue
- print(f"Downloading {name} to models/tokenizers/{name}")
+ logger.info(f"Downloading {name} to models/tokenizers/{name}")
url = f"{repo}/raw/main/config.json"
save_path = f"models/tokenizers/{name}/config.json"
@@ -115,76 +123,76 @@ for model in models:
continue
# create the tokenizer
- from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
chktok = tokenizer.encode(chktxt)
chkhsh = sha256(str(chktok).encode()).hexdigest()
- print(f"model: {name}")
- print(f"tokt: {tokt}")
- print(f"repo: {model['repo']}")
- print(f"chktok: {chktok}")
- print(f"chkhsh: {chkhsh}")
+ logger.info(f"model: {name}")
+ logger.info(f"tokt: {tokt}")
+ logger.info(f"repo: {model['repo']}")
+ logger.info(f"chktok: {chktok}")
+ logger.info(f"chkhsh: {chkhsh}")
# print the "pre_tokenizer" content from the tokenizer.json
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
cfg = json.load(f)
pre_tokenizer = cfg["pre_tokenizer"]
- print("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
+ logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
- print(f"\n")
+ logger.info("")
src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
src_ifs += f" # ref: {model['repo']}\n"
src_ifs += f" res = \"{name}\"\n"
-src_func = ""
-src_func += " def get_vocab_base_pre(self, tokenizer) -> str:\n"
-src_func += " # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that\n"
-src_func += " # is specific for the BPE pre-tokenizer used by the model\n"
-src_func += " # we will use this unique identifier to write a \"tokenizer.ggml.pre\" entry in the GGUF file which we can\n"
-src_func += " # use in llama.cpp to implement the same pre-tokenizer\n"
-src_func += "\n"
-src_func += f" chktxt = {repr(chktxt)}\n"
-src_func += "\n"
-src_func += " chktok = tokenizer.encode(chktxt)\n"
-src_func += " chkhsh = sha256(str(chktok).encode()).hexdigest()\n"
-src_func += "\n"
-src_func += " print(f\"chktok: {chktok}\")\n"
-src_func += " print(f\"chkhsh: {chkhsh}\")\n"
-src_func += "\n"
-src_func += " res = None\n"
-src_func += "\n"
-src_func += " # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script\n"
-src_func += " # or pull the latest version of the model from Huggingface\n"
-src_func += " # don't edit the hashes manually!\n"
-src_func += f"{src_ifs}\n"
-src_func += " if res is None:\n"
-src_func += " print(\"\\n\")\n"
-src_func += " print(\"**************************************************************************************\")\n"
-src_func += " print(\"** WARNING: The BPE pre-tokenizer was not recognized!\")\n"
-src_func += " print(\"** There are 2 possible reasons for this:\")\n"
-src_func += " print(\"** - the model has not been added to convert-hf-to-gguf-update.py yet\")\n"
-src_func += " print(\"** - the pre-tokenization config has changed upstream\")\n"
-src_func += " print(\"** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.\")\n"
-src_func += " print(\"** ref: https://github.com/ggerganov/llama.cpp/pull/6920\")\n"
-src_func += " print(\"**\")\n"
-src_func += " print(f\"** chkhsh: {chkhsh}\")\n"
-src_func += " print(\"**************************************************************************************\")\n"
-src_func += " print(\"\\n\")\n"
-src_func += " raise NotImplementedError(\"BPE pre-tokenizer was not recognized - update get_vocab_base_pre()\")\n"
-src_func += "\n"
-src_func += " print(f\"tokenizer.ggml.pre: {res}\")\n"
-src_func += " print(f\"chkhsh: {chkhsh}\")\n"
-src_func += "\n"
-src_func += " return res\n"
-
-print(src_func)
-
-print("\n")
-print("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!")
-print("\n")
+src_func = f"""
+ def get_vocab_base_pre(self, tokenizer) -> str:
+ # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
+ # is specific for the BPE pre-tokenizer used by the model
+ # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
+ # use in llama.cpp to implement the same pre-tokenizer
+
+ chktxt = {repr(chktxt)}
+
+ chktok = tokenizer.encode(chktxt)
+ chkhsh = sha256(str(chktok).encode()).hexdigest()
+
+ print(f"chktok: {{chktok}}")
+ print(f"chkhsh: {{chkhsh}}")
+
+ res = None
+
+ # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
+ # or pull the latest version of the model from Huggingface
+ # don't edit the hashes manually!
+{src_ifs}
+ if res is None:
+ print("\\n")
+ print("**************************************************************************************")
+ print("** WARNING: The BPE pre-tokenizer was not recognized!")
+ print("** There are 2 possible reasons for this:")
+ print("** - the model has not been added to convert-hf-to-gguf-update.py yet")
+ print("** - the pre-tokenization config has changed upstream")
+ print("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
+ print("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
+ print("**")
+ print(f"** chkhsh: {{chkhsh}}")
+ print("**************************************************************************************")
+ print("\\n")
+ raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
+
+ print(f"tokenizer.ggml.pre: {{repr(res)}}")
+ print(f"chkhsh: {{chkhsh}}")
+
+ return res
+"""
+
+print(src_func) # noqa: NP100
+
+logger.info("\n")
+logger.info("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!")
+logger.info("\n")
# generate tests for each tokenizer model
@@ -250,7 +258,6 @@ for model in models:
tokt = model["tokt"]
# create the tokenizer
- from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f:
@@ -265,15 +272,15 @@ for model in models:
f.write(f" {r}")
f.write("\n")
- print(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*")
+ logger.info(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*")
# generate commands for creating vocab files
-print("\nRun the following commands to generate the vocab files for testing:\n")
+logger.info("\nRun the following commands to generate the vocab files for testing:\n")
for model in models:
name = model["name"]
- print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only")
+ logger.info(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only")
-print("\n")
+logger.info("\n")