diff options
Diffstat (limited to 'convert-hf-to-gguf.py')
-rwxr-xr-x | convert-hf-to-gguf.py | 49 |
1 files changed, 49 insertions, 0 deletions
diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 5e343742..829d6836 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -22,6 +22,8 @@ if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) import gguf +from convert import HfVocab + # check for any of the given keys in the dictionary and return the value of the first key found def get_key_opts(d, keys): @@ -205,6 +207,8 @@ class Model: return OrionModel if model_architecture == "InternLM2ForCausalLM": return InternLM2Model + if model_architecture == "MiniCPMForCausalLM": + return MiniCPMModel return Model def _is_model_safetensors(self) -> bool: @@ -258,6 +262,8 @@ class Model: return gguf.MODEL_ARCH.ORION if arch == "InternLM2ForCausalLM": return gguf.MODEL_ARCH.INTERNLM2 + if arch == "MiniCPMForCausalLM": + return gguf.MODEL_ARCH.MINICPM raise NotImplementedError(f'Architecture "{arch}" not supported!') @@ -402,6 +408,31 @@ class Model: special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) special_vocab.add_to_gguf(self.gguf_writer) + def _set_vocab_hf(self): + path = self.dir_model + added_tokens_path = self.dir_model + vocab = HfVocab( + path, added_tokens_path if added_tokens_path.exists() else None + ) + tokens = [] + scores = [] + toktypes = [] + + for text, score, toktype in vocab.all_tokens(): + tokens.append(text) + scores.append(score) + toktypes.append(toktype) + + assert len(tokens) == vocab.vocab_size + + self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + class GPTNeoXModel(Model): def set_gguf_parameters(self): @@ -1041,6 +1072,24 @@ class MixtralModel(Model): self._set_vocab_sentencepiece() +class MiniCPMModel(Model): + def set_gguf_parameters(self): + block_count = self.hparams["num_hidden_layers"] + self.gguf_writer.add_name("MiniCPM") + self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) + self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) + self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) + self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_file_type(self.ftype) + self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + + def set_vocab(self): + self._set_vocab_hf() + + class QwenModel(Model): @staticmethod def token_bytes_to_string(b): |