diff options
Diffstat (limited to 'convert-hf-to-gguf.py')
-rwxr-xr-x | convert-hf-to-gguf.py | 86 |
1 files changed, 85 insertions, 1 deletions
diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index e71a96c4..303d0817 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -184,6 +184,8 @@ class Model: return MixtralModel if model_architecture == "PhiForCausalLM": return Phi2Model + if model_architecture == "PlamoForCausalLM": + return PlamoModel return Model def _is_model_safetensors(self) -> bool: @@ -225,6 +227,8 @@ class Model: return gguf.MODEL_ARCH.LLAMA if arch == "PhiForCausalLM": return gguf.MODEL_ARCH.PHI2 + if arch == "PlamoForCausalLM": + return gguf.MODEL_ARCH.PLAMO raise NotImplementedError(f'Architecture "{arch}" not supported!') @@ -1002,11 +1006,91 @@ class Phi2Model(Model): self.gguf_writer.add_add_bos_token(False) +class PlamoModel(Model): + def set_vocab(self): + self._set_vocab_sentencepiece() + + def set_gguf_parameters(self): + hparams = self.hparams + block_count = hparams["num_hidden_layers"] + + self.gguf_writer.add_name("PLaMo") + self.gguf_writer.add_context_length(4096) # not in config.json + self.gguf_writer.add_embedding_length(hparams["hidden_size"]) + self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_head_count(hparams["num_attention_heads"]) + self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong + self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) + + def shuffle_attn_q_weight(self, data_torch): + assert data_torch.size() == (5120, 5120) + data_torch = data_torch.reshape(8, 5, 128, 5120) + data_torch = torch.permute(data_torch, (1, 0, 2, 3)) + data_torch = torch.reshape(data_torch, (5120, 5120)) + return data_torch + + def shuffle_attn_output_weight(self, data_torch): + assert data_torch.size() == (5120, 5120) + data_torch = data_torch.reshape(5120, 8, 5, 128) + data_torch = torch.permute(data_torch, (0, 2, 1, 3)) + data_torch = torch.reshape(data_torch, (5120, 5120)) + return data_torch + + def write_tensors(self): + block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers")) + tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) + + for name, data_torch in self.get_tensors(): + if "self_attn.rotary_emb.inv_freq" in name: + continue + + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) + if new_name is None: + print(f"Can not map tensor {name!r}") + sys.exit() + + # shuffle for broadcasting of gqa in ggml_mul_mat + if new_name.endswith("attn_q.weight"): + data_torch = self.shuffle_attn_q_weight(data_torch) + elif new_name.endswith("attn_output.weight"): + data_torch = self.shuffle_attn_output_weight(data_torch) + + old_dtype = data_torch.dtype + + # convert any unsupported data types to float32 + if data_torch.dtype not in (torch.float16, torch.float32): + data_torch = data_torch.to(torch.float32) + + data = data_torch.squeeze().numpy() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if self.ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + + self.gguf_writer.add_tensor(new_name, data) + + ###### CONVERSION LOGIC ###### def parse_args() -> argparse.Namespace: - parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file") + parser = argparse.ArgumentParser( + description="Convert a huggingface model to a GGML compatible file") parser.add_argument( "--vocab-only", action="store_true", help="extract only the vocab", |