summaryrefslogtreecommitdiff
path: root/convert-hf-to-gguf.py
diff options
context:
space:
mode:
Diffstat (limited to 'convert-hf-to-gguf.py')
-rwxr-xr-xconvert-hf-to-gguf.py93
1 files changed, 89 insertions, 4 deletions
diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py
index 3b9fa264..d1b8cef1 100755
--- a/convert-hf-to-gguf.py
+++ b/convert-hf-to-gguf.py
@@ -11,6 +11,7 @@ import sys
from abc import ABC, abstractmethod
from enum import IntEnum
from pathlib import Path
+from hashlib import sha256
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
import numpy as np
@@ -229,7 +230,7 @@ class Model(ABC):
return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
# used for GPT-2 BPE and WordPiece vocabs
- def get_basic_vocab(self) -> tuple[list[str], list[int]]:
+ def get_vocab_base(self) -> tuple[list[str], list[int], str]:
tokens: list[str] = []
toktypes: list[int] = []
@@ -238,6 +239,8 @@ class Model(ABC):
vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
+ tokpre = self.get_vocab_base_pre(tokenizer)
+
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
added_vocab = tokenizer.get_added_vocab()
@@ -255,11 +258,75 @@ class Model(ABC):
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
- return tokens, toktypes
+ return tokens, toktypes, tokpre
+
+ # NOTE: this function is generated by convert-hf-to-gguf-update.py
+ # do not modify it manually!
+ # ref: https://github.com/ggerganov/llama.cpp/pull/6920
+ def get_vocab_base_pre(self, tokenizer) -> str:
+ # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
+ # is specific for the BPE pre-tokenizer used by the model
+ # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
+ # use in llama.cpp to implement the same pre-tokenizer
+
+ chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
+
+ chktok = tokenizer.encode(chktxt)
+ chkhsh = sha256(str(chktok).encode()).hexdigest()
+
+ print(f"chktok: {chktok}")
+ print(f"chkhsh: {chkhsh}")
+
+ res = None
+
+ # NOTE: if you get an error here, you need to add the model to the if-elif chain below
+ # don't do this manually - use the convert-hf-to-gguf-update.py script!
+ if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
+ # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
+ res = "llama-bpe"
+ if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
+ # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
+ res = "deepseek-llm"
+ if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
+ # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
+ res = "deepseek-coder"
+ if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
+ # ref: https://huggingface.co/tiiuae/falcon-7b
+ res = "falcon"
+ if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
+ # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
+ res = "bert-bge"
+ if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
+ # ref: https://huggingface.co/mosaicml/mpt-7b
+ res = "mpt"
+ if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
+ # ref: https://huggingface.co/bigcode/starcoder2-3b
+ res = "starcoder"
+ if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
+ # ref: https://huggingface.co/openai-community/gpt2
+ res = "gpt-2"
+
+ if res is None:
+ print("\n")
+ print("**************************************************************************************")
+ print("** WARNING: The BPE pre-tokenizer was not recognized!")
+ print("** This means that it was not added yet or you are using an older version.")
+ print("** Check convert-hf-to-gguf-update.py and update it accordingly.")
+ print("**")
+ print(f"** chkhsh: {chkhsh}")
+ print("**************************************************************************************")
+ print("\n")
+ raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
+
+ print(f"tokenizer.ggml.pre: {res}")
+ print(f"chkhsh: {chkhsh}")
+
+ return res
def _set_vocab_gpt2(self) -> None:
- tokens, toktypes = self.get_basic_vocab()
+ tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
+ self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
@@ -277,6 +344,8 @@ class Model(ABC):
vocab_size = hparams["vocab_size"]
assert max(tokenizer.get_vocab().values()) < vocab_size
+ tokpre = self.get_vocab_base_pre(tokenizer)
+
merges = []
vocab = {}
mergeable_ranks = tokenizer.mergeable_ranks
@@ -304,6 +373,7 @@ class Model(ABC):
toktypes.append(gguf.TokenType.NORMAL)
self.gguf_writer.add_tokenizer_model("gpt2")
+ self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
@@ -376,6 +446,7 @@ class Model(ABC):
assert len(tokens) == vocab_size
self.gguf_writer.add_tokenizer_model("llama")
+ self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
@@ -397,6 +468,7 @@ class Model(ABC):
assert len(tokens) == vocab.vocab_size
self.gguf_writer.add_tokenizer_model("llama")
+ self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
@@ -840,6 +912,7 @@ class XverseModel(Model):
toktypes.append(toktype)
self.gguf_writer.add_tokenizer_model("llama")
+ self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
@@ -1335,6 +1408,11 @@ class LlamaModel(Model):
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
+ if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+ if self.hparams["rope_scaling"].get("type") == "linear":
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+ self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
# Same as super class, but permuting q_proj, k_proj
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
@@ -2052,6 +2130,7 @@ class Phi3MiniModel(Model):
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
self.gguf_writer.add_tokenizer_model("llama")
+ self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
@@ -2294,6 +2373,7 @@ class InternLM2Model(Model):
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
self.gguf_writer.add_tokenizer_model("llama")
+ self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
@@ -2443,7 +2523,7 @@ class BertModel(Model):
self.gguf_writer.add_pooling_type(pooling_type)
def set_vocab(self):
- tokens, toktypes = self.get_basic_vocab()
+ tokens, toktypes, tokpre = self.get_vocab_base()
self.vocab_size = len(tokens)
# we need this to validate the size of the token_type embeddings
@@ -2461,6 +2541,7 @@ class BertModel(Model):
# add vocab to gguf
self.gguf_writer.add_tokenizer_model("bert")
+ self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
@@ -2642,6 +2723,9 @@ class MambaModel(Model):
field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
+ field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
+ self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]))
+
field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
@@ -2847,6 +2931,7 @@ def parse_args() -> argparse.Namespace:
help="directory containing model file",
)
parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
+ parser.add_argument("--model-name", type=str, default=None, help="name of the model")
return parser.parse_args()