summaryrefslogtreecommitdiff
path: root/convert-llama-7b-pth-to-gguf.py
diff options
context:
space:
mode:
Diffstat (limited to 'convert-llama-7b-pth-to-gguf.py')
-rwxr-xr-xconvert-llama-7b-pth-to-gguf.py200
1 files changed, 75 insertions, 125 deletions
diff --git a/convert-llama-7b-pth-to-gguf.py b/convert-llama-7b-pth-to-gguf.py
index 2ab08238..6e973a11 100755
--- a/convert-llama-7b-pth-to-gguf.py
+++ b/convert-llama-7b-pth-to-gguf.py
@@ -10,8 +10,9 @@ import struct
import json
import numpy as np
import torch
+import argparse
-from typing import Any, List
+from typing import Any, List, TypeAlias
from pathlib import Path
from sentencepiece import SentencePieceProcessor
@@ -20,7 +21,7 @@ from sentencepiece import SentencePieceProcessor
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
-def count_model_parts(dir_model: str) -> int:
+def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("consolidated."):
@@ -31,18 +32,21 @@ def count_model_parts(dir_model: str) -> int:
return num_parts
-if len(sys.argv) < 3:
- print(f"Usage: python {sys.argv[0]} dir-model ftype\n")
- print(" ftype == 0 -> float32")
- print(" ftype == 1 -> float16")
-
- sys.exit(1)
+def parse_args() -> argparse.Namespace:
+ parser = argparse.ArgumentParser(description="Convert a PyTorch 7B LLaMA model to a GGML compatible file")
+ parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
+ parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
+ parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
+ parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1)
+ return parser.parse_args()
+args = parse_args()
-# output in the same directory as the model
-dir_model = sys.argv[1]
-last_dir = os.path.basename(os.path.normpath(dir_model))
-
+dir_model = args.model
+ftype = args.ftype
+if not dir_model.is_dir():
+ print(f'Error: {args.model} is not a directory', file = sys.stderr)
+ sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
@@ -51,19 +55,15 @@ last_dir = os.path.basename(os.path.normpath(dir_model))
# map from ftype to string
ftype_str = ["f32", "f16"]
-ftype = 1
-if len(sys.argv) > 2:
- ftype = int(sys.argv[2])
- if ftype < 0 or ftype > 1:
- print("Invalid ftype: " + str(ftype))
-
- sys.exit(1)
-
-fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
+if args.outfile is not None:
+ fname_out = args.outfile
+else:
+ # output in the same directory as the model by default
+ fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-print("gguf: loading model "+last_dir)
+print("gguf: loading model "+dir_model.name)
-with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
+with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "LlamaForCausalLM":
@@ -107,7 +107,7 @@ else:
sys.exit()
-gguf_writer.add_name(last_dir)
+gguf_writer.add_name(dir_model.name)
gguf_writer.add_source_hf_repo(hf_repo)
gguf_writer.add_tensor_data_layout("Meta AI original pth")
gguf_writer.add_context_length(ctx_length)
@@ -133,109 +133,60 @@ tokens: List[bytes] = []
scores: List[float] = []
toktypes: List[int] = []
-if Path(dir_model + "/tokenizer.model").is_file():
- # vocab type sentencepiece
- print("gguf: get sentencepiece tokenizer vocab and scores")
-
- tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
-
- for i in range(tokenizer.vocab_size()):
- text: bytes
- score: float
-
- piece = tokenizer.id_to_piece(i)
- text = piece.encode("utf-8")
- score = tokenizer.get_score(i)
-
- toktype = 1 # defualt to normal token type
- if tokenizer.is_unknown(i):
- toktype = 2
- if tokenizer.is_control(i):
- toktype = 3
-
- # toktype = 4 is user-defined = tokens from added_tokens.json
-
- if tokenizer.is_unused(i):
- toktype = 5
- if tokenizer.is_byte(i):
- toktype = 6
-
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
-
- if Path(dir_model + "/added_tokens.json").is_file():
- with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f:
- addtokens_json = json.load(f)
-
- print("gguf: get added tokens")
-
- for key in addtokens_json:
- tokens.append( key.encode("utf-8") )
- scores.append(-1000.0)
- toktypes.append(4) # user-defined token type
-
- gguf_writer.add_tokenizer_model("llama")
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_scores(scores)
- gguf_writer.add_token_types(toktypes)
-
-
-print("gguf: get special token ids")
-
-if Path(dir_model + "/tokenizer.json").is_file():
- # Look for special tokens in tokenizer.json if it exists
-
- with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
- tokenizer = json.load(f)
+tokenizer_model_file = dir_model / 'tokenizer.model'
+if not tokenizer_model_file.is_file():
+ print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
+ sys.exit(1)
- if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
+# vocab type sentencepiece
+print("gguf: get sentencepiece tokenizer vocab and scores")
- with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
- tokenizer_config = json.load(f)
+tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
- if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["bos_token"]["content"]:
- gguf_writer.add_bos_token_id(key["id"])
+for i in range(tokenizer.vocab_size()):
+ text: bytes
+ score: float
- if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["eos_token"]["content"]:
- gguf_writer.add_eos_token_id(key["id"])
+ piece = tokenizer.id_to_piece(i)
+ text = piece.encode("utf-8")
+ score = tokenizer.get_score(i)
- if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["unk_token"]["content"]:
- gguf_writer.add_unk_token_id(key["id"])
+ toktype = 1 # defualt to normal token type
+ if tokenizer.is_unknown(i):
+ toktype = 2
+ if tokenizer.is_control(i):
+ toktype = 3
- if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["sep_token"]["content"]:
- gguf_writer.add_sep_token_id(key["id"])
+ # toktype = 4 is user-defined = tokens from added_tokens.json
- if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["pad_token"]["content"]:
- gguf_writer.add_pad_token_id(key["id"])
-else:
- # If no tokenizer.json: Look for special tokens in config.json
+ if tokenizer.is_unused(i):
+ toktype = 5
+ if tokenizer.is_byte(i):
+ toktype = 6
- if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
- gguf_writer.add_bos_token_id(hparams["bos_token_id"])
+ tokens.append(text)
+ scores.append(score)
+ toktypes.append(toktype)
- if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
- gguf_writer.add_eos_token_id(hparams["eos_token_id"])
+added_tokens_file = dir_model / 'added_tokens.json'
+if added_tokens_file.is_file():
+ with open(added_tokens_file, "r", encoding="utf-8") as f:
+ addtokens_json = json.load(f)
- if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
- gguf_writer.add_unk_token_id(hparams["unk_token_id"])
+ print("gguf: get added tokens")
- if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
- gguf_writer.add_sep_token_id(hparams["sep_token_id"])
+ for key in addtokens_json:
+ tokens.append( key.encode("utf-8") )
+ scores.append(-1000.0)
+ toktypes.append(4) # user-defined token type
- if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
- gguf_writer.add_pad_token_id(hparams["pad_token_id"])
+gguf_writer.add_tokenizer_model("llama")
+gguf_writer.add_token_list(tokens)
+gguf_writer.add_token_scores(scores)
+gguf_writer.add_token_types(toktypes)
+special_vocab = gguf.SpecialVocab(dir_model)
+special_vocab.add_to_gguf(gguf_writer)
# TENSORS
@@ -247,6 +198,8 @@ print("gguf: get tensor metadata")
part_names = (f"consolidated.{n:02}.pth" for n in range(0, num_parts))
for part_name in part_names:
+ if args.vocab_only:
+ break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
@@ -266,11 +219,8 @@ for part_name in part_names:
data = data.squeeze().numpy()
# map tensor names
- if name.endswith(".weight") and name[:-7] in tensor_map:
- name = tensor_map[name[:-7]] + ".weight"
- elif name.endswith(".bias") and name[:-5] in tensor_map:
- name = tensor_map[name[:-5]] + ".bias"
- else:
+ new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
+ if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
@@ -289,20 +239,20 @@ for part_name in part_names:
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
- print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
+ print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
- gguf_writer.add_tensor(name, data)
+ gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
-print("gguf: write tensors")
-gguf_writer.write_tensors_to_file()
+if not args.vocab_only:
+ print("gguf: write tensors")
+ gguf_writer.write_tensors_to_file()
gguf_writer.close()
-
-print("gguf: model successfully exported to '" + fname_out + "'")
+print(f"gguf: model successfully exported to '{fname_out}'")
print("")