summaryrefslogtreecommitdiff
path: root/convert-llama-ggml-to-gguf.py
diff options
context:
space:
mode:
Diffstat (limited to 'convert-llama-ggml-to-gguf.py')
-rwxr-xr-xconvert-llama-ggml-to-gguf.py445
1 files changed, 0 insertions, 445 deletions
diff --git a/convert-llama-ggml-to-gguf.py b/convert-llama-ggml-to-gguf.py
deleted file mode 100755
index 9349de3b..00000000
--- a/convert-llama-ggml-to-gguf.py
+++ /dev/null
@@ -1,445 +0,0 @@
-#!/usr/bin/env python3
-from __future__ import annotations
-
-import logging
-import argparse
-import os
-import struct
-import sys
-from enum import IntEnum
-from pathlib import Path
-
-import numpy as np
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
-import gguf
-
-logger = logging.getLogger("ggml-to-gguf")
-
-
-class GGMLFormat(IntEnum):
- GGML = 0
- GGMF = 1
- GGJT = 2
-
-
-class GGMLFType(IntEnum):
- ALL_F32 = 0
- MOSTLY_F16 = 1
- MOSTLY_Q4_0 = 2
- MOSTLY_Q4_1 = 3
- MOSTLY_Q4_1_SOME_F16 = 4
- MOSTLY_Q8_0 = 7
- MOSTLY_Q5_0 = 8
- MOSTLY_Q5_1 = 9
- MOSTLY_Q2_K = 10
- MOSTLY_Q3_K_S = 11
- MOSTLY_Q3_K_M = 12
- MOSTLY_Q3_K_L = 13
- MOSTLY_Q4_K_S = 14
- MOSTLY_Q4_K_M = 15
- MOSTLY_Q5_K_S = 16
- MOSTLY_Q5_K_M = 17
- MOSTLY_Q6_K = 18
-
-
-class Hyperparameters:
- def __init__(self):
- self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
- self.n_layer = self.n_rot = self.n_ff = 0
- self.ftype = GGMLFType.ALL_F32
-
- def set_n_ff(self, model):
- ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
- assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
- ff_tensor = model.tensors[ff_tensor_idx]
- self.n_ff = ff_tensor.dims[1]
-
- def load(self, data, offset):
- (
- self.n_vocab,
- self.n_embd,
- self.n_mult,
- self.n_head,
- self.n_layer,
- self.n_rot,
- ftype,
- ) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
- try:
- self.ftype = GGMLFType(ftype)
- except ValueError:
- raise ValueError(f'Invalid ftype {ftype}')
- return 4 * 7
-
- def __str__(self):
- return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'
-
-
-class Vocab:
- def __init__(self, load_scores = True):
- self.items = []
- self.load_scores = load_scores
-
- def load(self, data, offset, n_vocab):
- orig_offset = offset
- for _ in range(n_vocab):
- itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
- assert itemlen < 4096, 'Absurd vocab item length'
- offset += 4
- item_text = bytes(data[offset:offset + itemlen])
- offset += itemlen
- if self.load_scores:
- item_score = struct.unpack('<f', data[offset:offset + 4])[0]
- offset += 4
- else:
- item_score = 0.0
- self.items.append((item_text, item_score))
- return offset - orig_offset
-
-
-class Tensor:
- def __init__(self, use_padding = True):
- self.name = None
- self.dims: tuple[int, ...] = ()
- self.dtype = None
- self.start_offset = 0
- self.len_bytes = np.int64(0)
- self.use_padding = use_padding
-
- def load(self, data, offset):
- orig_offset = offset
- (n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
- assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
- assert name_len < 4096, 'Absurd tensor name length'
- quant = gguf.GGML_QUANT_SIZES.get(dtype)
- assert quant is not None, 'Unknown tensor type'
- (blksize, tysize) = quant
- offset += 12
- self.dtype= dtype
- self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
- offset += 4 * n_dims
- self.name = bytes(data[offset:offset + name_len])
- offset += name_len
- pad = ((offset + 31) & ~31) - offset if self.use_padding else 0
- offset += pad
- n_elems = np.prod(self.dims)
- n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize)
- self.start_offset = offset
- self.len_bytes = n_bytes
- offset += n_bytes
- return offset - orig_offset
-
-
-class GGMLModel:
- def __init__(self):
- self.hyperparameters = None
- self.vocab = None
- self.tensor_map = {}
- self.tensors = []
-
- def validate_header(self, data, offset):
- magic = bytes(data[offset:offset + 4])
- if magic == b'GGUF':
- raise ValueError('File is already in GGUF format.')
- if magic == b'lmgg':
- self.file_format = GGMLFormat.GGML
- self.format_version = 1
- return 4
- version = struct.unpack('<I', data[offset + 4:offset + 8])[0]
- if magic == b'fmgg':
- if version != 1:
- raise ValueError(f'Cannot handle unexpected GGMF file version {version}')
- self.file_format = GGMLFormat.GGMF
- self.format_version = version
- return 8
- if magic == b'tjgg':
- if version < 1 or version > 3:
- raise ValueError(f'Cannot handle unexpected GGJT file version {version}')
- self.file_format = GGMLFormat.GGJT
- self.format_version = version
- return 8
- raise ValueError(f"Unexpected file magic {magic!r}! This doesn't look like a GGML format file.")
-
- def validate_conversion(self, ftype):
- err = ''
- if (self.file_format < GGMLFormat.GGJT or self.format_version < 2):
- if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
- err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
- elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
- if ftype in (GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
- GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
- err = 'Q4 and Q8 quantizations changed in GGJTv3.'
- if len(err) > 0:
- raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.')
-
- def load(self, data, offset):
- offset += self.validate_header(data, offset)
- hp = Hyperparameters()
- offset += hp.load(data, offset)
- logger.info(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}')
- self.validate_conversion(hp.ftype)
- vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML)
- offset += vocab.load(data, offset, hp.n_vocab)
- tensors: list[Tensor] = []
- tensor_map = {}
- while offset < len(data):
- tensor = Tensor(use_padding = self.file_format > GGMLFormat.GGMF)
- offset += tensor.load(data, offset)
- tensor_map[tensor.name] = len(tensors)
- tensors.append(tensor)
- self.hyperparameters = hp
- self.vocab = vocab
- self.tensors = tensors
- self.tensor_map = tensor_map
- hp.set_n_ff(self)
- return offset
-
-
-class GGMLToGGUF:
- def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
- hp = ggml_model.hyperparameters
- self.model = ggml_model
- self.data = data
- self.cfg = cfg
- self.params_override = params_override
- self.vocab_override = vocab_override
- self.special_vocab = special_vocab
- if params_override is not None:
- n_kv_head = params_override.n_head_kv
- else:
- if cfg.gqa == 1:
- n_kv_head = hp.n_head
- else:
- gqa = float(cfg.gqa)
- n_kv_head = None
- for x in range(1, 256):
- if float(hp.n_head) / float(x) == gqa:
- n_kv_head = x
- assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
- logger.info(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
- self.n_kv_head = n_kv_head
- self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
-
- def save(self):
- logger.info('* Preparing to save GGUF file')
- gguf_writer = gguf.GGUFWriter(
- self.cfg.output,
- gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
- use_temp_file = False)
- self.add_params(gguf_writer)
- self.add_vocab(gguf_writer)
- if self.special_vocab is not None:
- self.special_vocab.add_to_gguf(gguf_writer)
- self.add_tensors(gguf_writer)
- logger.info(" gguf: write header")
- gguf_writer.write_header_to_file()
- logger.info(" gguf: write metadata")
- gguf_writer.write_kv_data_to_file()
- logger.info(" gguf: write tensors")
- gguf_writer.write_tensors_to_file()
- gguf_writer.close()
-
- def add_params(self, gguf_writer):
- hp = self.model.hyperparameters
- cfg = self.cfg
- if cfg.desc is not None:
- desc = cfg.desc
- else:
- desc = f'converted from legacy {self.model.file_format.name}v{self.model.format_version} {hp.ftype.name} format'
- try:
- # Filenames aren't necessarily valid UTF8.
- name = cfg.name if cfg.name is not None else cfg.input.name
- except UnicodeDecodeError:
- name = None
- logger.info('* Adding model parameters and KV items')
- if name is not None:
- gguf_writer.add_name(name)
- gguf_writer.add_description(desc)
- gguf_writer.add_file_type(int(hp.ftype))
- if self.params_override is not None:
- po = self.params_override
- assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
- assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
- assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
- gguf_writer.add_context_length (po.n_ctx)
- gguf_writer.add_embedding_length (po.n_embd)
- gguf_writer.add_block_count (po.n_layer)
- gguf_writer.add_feed_forward_length (po.n_ff)
- gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
- gguf_writer.add_head_count (po.n_head)
- gguf_writer.add_head_count_kv (po.n_head_kv)
- gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps)
- return
- gguf_writer.add_context_length(cfg.context_length)
- gguf_writer.add_embedding_length(hp.n_embd)
- gguf_writer.add_block_count(hp.n_layer)
- gguf_writer.add_feed_forward_length(hp.n_ff)
- gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
- gguf_writer.add_head_count(hp.n_head)
- gguf_writer.add_head_count_kv(self.n_kv_head)
- gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
-
- def add_vocab(self, gguf_writer):
- hp = self.model.hyperparameters
- gguf_writer.add_tokenizer_model('llama')
- gguf_writer.add_tokenizer_pre('default')
- tokens = []
- scores = []
- toktypes = []
- if self.vocab_override is not None:
- vo = self.vocab_override
- logger.info('* Adding vocab item(s)')
- for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
- tokens.append(vbytes)
- scores.append(score)
- toktypes.append(ttype)
- assert len(tokens) == hp.n_vocab, \
- f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_scores(scores)
- if len(toktypes) > 0:
- gguf_writer.add_token_types(toktypes)
- return
- logger.info(f'* Adding {hp.n_vocab} vocab item(s)')
- assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
- for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
- tt = 1 # Normal
- # Special handling for UNK, BOS, EOS tokens.
- if tokid <= 2:
- if tokid == 0:
- vbytes = b'<unk>'
- tt = 2
- elif tokid == 1:
- vbytes = b'<s>'
- tt = 3
- else:
- vbytes = b'</s>'
- tt = 3
- elif len(vbytes) == 0:
- tt = 3 # Control
- elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
- vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8')
- tt = 6 # Byte
- else:
- vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
- toktypes.append(tt)
- tokens.append(vbytes)
- scores.append(vscore)
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_scores(scores)
- gguf_writer.add_token_types(toktypes)
- gguf_writer.add_unk_token_id(0)
- gguf_writer.add_bos_token_id(1)
- gguf_writer.add_eos_token_id(2)
-
- def add_tensors(self, gguf_writer):
- tensor_map = self.name_map
- data = self.data
- logger.info(f'* Adding {len(self.model.tensors)} tensor(s)')
- for tensor in self.model.tensors:
- name = str(tensor.name, 'UTF-8')
- mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
- assert mapped_name is not None, f'Bad name {name}'
- tempdims = list(tensor.dims[:])
- if len(tempdims) > 1:
- temp = tempdims[1]
- tempdims[1] = tempdims[0]
- tempdims[0] = temp
- gguf_writer.add_tensor(
- mapped_name,
- data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
- raw_shape = tempdims,
- raw_dtype = tensor.dtype)
-
-
-def handle_metadata(cfg, hp):
- import convert
- assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
- hf_config_path = cfg.model_metadata_dir / "config.json"
- orig_config_path = cfg.model_metadata_dir / "params.json"
- # We pass a fake model here. "original" mode will check the shapes of some
- # tensors if information is missing in the .json file: other than that, the
- # model data isn't used so this should be safe (at least for now).
- fakemodel = {
- 'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
- 'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
- }
- fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
- fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
- if hf_config_path.exists():
- params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
- elif orig_config_path.exists():
- params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
- else:
- raise ValueError('Unable to load metadata')
- vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir)
- vocab_factory = convert.VocabFactory(vocab_path)
- vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir)
- convert.check_vocab_size(params, vocab)
- return params, vocab, special_vocab
-
-
-def handle_args():
- parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
- parser.add_argument('--input', '-i', type = Path, required = True,
- help = 'Input GGMLv3 filename')
- parser.add_argument('--output', '-o', type = Path, required = True,
- help ='Output GGUF filename')
- parser.add_argument('--name',
- help = 'Set model name')
- parser.add_argument('--desc',
- help = 'Set model description')
- parser.add_argument('--gqa', type = int, default = 1,
- help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
- parser.add_argument('--eps', default = '5.0e-06',
- help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
- parser.add_argument('--context-length', '-c', type=int, default = 2048,
- help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
- parser.add_argument('--model-metadata-dir', '-m', type = Path,
- help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
- parser.add_argument("--vocab-dir", type=Path,
- help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
- parser.add_argument("--vocabtype", default="spm,hfft",
- help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)")
- parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
- return parser.parse_args()
-
-
-def main():
- cfg = handle_args()
- logging.basicConfig(level=logging.DEBUG if cfg.verbose else logging.INFO)
- logger.info(f'* Using config: {cfg}')
- logger.warning('=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===')
- if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'):
- logger.info('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".')
- data = np.memmap(cfg.input, mode = 'r')
- model = GGMLModel()
- logger.info('* Scanning GGML input file')
- offset = model.load(data, 0) # noqa
- logger.info(f'* GGML model hyperparameters: {model.hyperparameters}')
- vocab_override = None
- params_override = None
- special_vocab = None
- if cfg.model_metadata_dir is not None:
- (params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters)
- logger.info('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
- logger.info(f'* Overriding params: {params_override}')
- logger.info(f'* Overriding vocab: {vocab_override}')
- logger.info(f'* Special vocab: {special_vocab}')
- else:
- logger.warning('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
- if model.file_format == GGMLFormat.GGML:
- logger.info('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
- converter = GGMLToGGUF(
- model, data, cfg,
- params_override = params_override,
- vocab_override = vocab_override,
- special_vocab = special_vocab
- )
- converter.save()
- logger.info(f'* Successful completion. Output saved to: {cfg.output}')
-
-
-if __name__ == '__main__':
- main()