summaryrefslogtreecommitdiff
path: root/convert-llama-hf-to-gguf.py
diff options
context:
space:
mode:
Diffstat (limited to 'convert-llama-hf-to-gguf.py')
-rw-r--r--convert-llama-hf-to-gguf.py327
1 files changed, 327 insertions, 0 deletions
diff --git a/convert-llama-hf-to-gguf.py b/convert-llama-hf-to-gguf.py
new file mode 100644
index 00000000..f8cfdaa8
--- /dev/null
+++ b/convert-llama-hf-to-gguf.py
@@ -0,0 +1,327 @@
+# HF llama --> gguf conversion
+
+import gguf
+import os
+import sys
+import struct
+import json
+import numpy as np
+import torch
+
+from typing import Any, List, Optional
+from pathlib import Path
+from sentencepiece import SentencePieceProcessor
+
+#NDArray = np.ndarray[Any, Any]
+# compatible with python < 3.9
+NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
+
+# reverse HF permute back to original pth layout
+# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
+
+
+def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
+ if n_kv_head is not None and n_head != n_kv_head:
+ n_head //= n_kv_head
+
+ return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+ .swapaxes(1, 2)
+ .reshape(weights.shape))
+
+
+def count_model_parts(dir_model: str) -> int:
+ num_parts = 0
+
+ for filename in os.listdir(dir_model):
+ if filename.startswith("pytorch_model-"):
+ num_parts += 1
+
+ if num_parts > 0:
+ print("gguf: found " + str(num_parts) + " model parts")
+
+ return num_parts
+
+
+if len(sys.argv) < 3:
+ print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
+ print(" ftype == 0 -> float32")
+ print(" ftype == 1 -> float16")
+
+ sys.exit(1)
+
+
+# output in the same directory as the model
+dir_model = sys.argv[1]
+last_dir = os.path.basename(os.path.normpath(dir_model))
+
+
+# possible tensor data types
+# ftype == 0 -> float32
+# ftype == 1 -> float16
+
+
+# map from ftype to string
+ftype_str = ["f32", "f16"]
+
+ftype = 1
+if len(sys.argv) > 2:
+ ftype = int(sys.argv[2])
+ if ftype < 0 or ftype > 1:
+ print("Invalid ftype: " + str(ftype))
+
+ sys.exit(1)
+
+fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
+
+print("gguf: loading model "+last_dir)
+
+with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
+ hparams = json.load(f)
+
+if hparams["architectures"][0] != "LlamaForCausalLM":
+ print("Model architecture not supported: " + hparams["architectures"][0])
+
+ sys.exit()
+
+# get number of model parts
+num_parts = count_model_parts(dir_model)
+
+ARCH=gguf.MODEL_ARCH.LLAMA
+gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
+
+print("gguf: get model metadata")
+
+block_count = hparams["num_hidden_layers"]
+head_count = hparams["num_attention_heads"]
+
+if "num_key_value_heads" in hparams:
+ head_count_kv = hparams["num_key_value_heads"]
+else:
+ head_count_kv = head_count
+
+if "_name_or_path" in hparams:
+ hf_repo = hparams["_name_or_path"]
+else:
+ hf_repo = ""
+
+if "max_sequence_length" in hparams:
+ ctx_length = hparams["max_sequence_length"]
+elif "max_position_embeddings" in hparams:
+ ctx_length = hparams["max_position_embeddings"]
+else:
+ print("gguf: can not find ctx length parameter.")
+
+ sys.exit()
+
+
+gguf_writer.add_name(last_dir)
+gguf_writer.add_source_hf_repo(hf_repo)
+gguf_writer.add_tensor_data_layout("Meta AI original pth")
+gguf_writer.add_context_length(ctx_length)
+gguf_writer.add_embedding_length(hparams["hidden_size"])
+gguf_writer.add_block_count(block_count)
+gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
+gguf_writer.add_head_count(head_count)
+gguf_writer.add_head_count_kv(head_count_kv)
+gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
+
+if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
+ if "type" in hparams["rope_scaling"]:
+ if hparams["rope_scaling"]["type"] == "linear":
+ gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
+
+
+# TOKENIZATION
+
+print("gguf: get tokenizer metadata")
+
+tokens: List[bytes] = []
+scores: List[float] = []
+toktypes: List[int] = []
+
+if Path(dir_model + "/tokenizer.model").is_file():
+ # vocab type sentencepiece
+ print("gguf: get sentencepiece tokenizer vocab, scores and token types")
+
+ tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
+
+ for i in range(tokenizer.vocab_size()):
+ text: bytes
+ score: float
+
+ piece = tokenizer.id_to_piece(i)
+ text = piece.encode("utf-8")
+ score = tokenizer.get_score(i)
+
+ toktype = 1 # defualt to normal token type
+ if tokenizer.is_unknown(i):
+ toktype = 2
+ if tokenizer.is_control(i):
+ toktype = 3
+
+ # toktype = 4 is user-defined = tokens from added_tokens.json
+
+ if tokenizer.is_unused(i):
+ toktype = 5
+ if tokenizer.is_byte(i):
+ toktype = 6
+
+ tokens.append(text)
+ scores.append(score)
+ toktypes.append(toktype)
+
+ if Path(dir_model + "/added_tokens.json").is_file():
+ with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f:
+ addtokens_json = json.load(f)
+
+ print("gguf: get added tokens")
+
+ for key in addtokens_json:
+ tokens.append( key.encode("utf-8") )
+ scores.append(-1000.0)
+ toktypes.append(4) # user-defined token type
+
+
+ gguf_writer.add_tokenizer_model("llama")
+ gguf_writer.add_token_list(tokens)
+ gguf_writer.add_token_scores(scores)
+ gguf_writer.add_token_types(toktypes)
+
+
+print("gguf: get special token ids")
+
+if Path(dir_model + "/tokenizer.json").is_file():
+ # Look for special tokens in tokenizer.json if it exists
+
+ with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
+ tokenizer = json.load(f)
+
+ if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
+
+ with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
+ tokenizer_config = json.load(f)
+
+ if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
+ for key in tokenizer["added_tokens"]:
+ if key["content"] == tokenizer_config["bos_token"]["content"]:
+ gguf_writer.add_bos_token_id(key["id"])
+
+ if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
+ for key in tokenizer["added_tokens"]:
+ if key["content"] == tokenizer_config["eos_token"]["content"]:
+ gguf_writer.add_eos_token_id(key["id"])
+
+ if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
+ for key in tokenizer["added_tokens"]:
+ if key["content"] == tokenizer_config["unk_token"]["content"]:
+ gguf_writer.add_unk_token_id(key["id"])
+
+ if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
+ for key in tokenizer["added_tokens"]:
+ if key["content"] == tokenizer_config["sep_token"]["content"]:
+ gguf_writer.add_sep_token_id(key["id"])
+
+ if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
+ for key in tokenizer["added_tokens"]:
+ if key["content"] == tokenizer_config["pad_token"]["content"]:
+ gguf_writer.add_pad_token_id(key["id"])
+else:
+ # If no tokenizer.json: Look for special tokens in config.json
+
+ if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
+ gguf_writer.add_bos_token_id(hparams["bos_token_id"])
+
+ if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
+ gguf_writer.add_eos_token_id(hparams["eos_token_id"])
+
+ if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
+ gguf_writer.add_unk_token_id(hparams["unk_token_id"])
+
+ if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
+ gguf_writer.add_sep_token_id(hparams["sep_token_id"])
+
+ if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
+ gguf_writer.add_pad_token_id(hparams["pad_token_id"])
+
+
+# TENSORS
+
+tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
+
+# tensor info
+print("gguf: get tensor metadata")
+
+if num_parts == 0:
+ part_names = ("pytorch_model.bin",)
+else:
+ part_names = (
+ f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
+ )
+
+for part_name in part_names:
+ print("gguf: loading model part '" + part_name + "'")
+ model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
+
+ for name in model_part.keys():
+ data = model_part[name]
+
+ # we don't need these
+ if name.endswith(".rotary_emb.inv_freq"):
+ continue
+
+ old_dtype = data.dtype
+
+ # convert any unsupported data types to float32
+ if data.dtype != torch.float16 and data.dtype != torch.float32:
+ data = data.to(torch.float32)
+
+ data = data.squeeze().numpy()
+
+ # reverse permute these
+ if name.endswith(".q_proj.weight"):
+ data = reverse_hf_permute(data, head_count)
+ if name.endswith(".k_proj.weight"):
+ data = reverse_hf_permute(data, head_count, head_count_kv)
+
+ # map tensor names
+ if name.endswith(".weight") and name[:-7] in tensor_map:
+ name = tensor_map[name[:-7]] + ".weight"
+ elif name.endswith(".bias") and name[:-5] in tensor_map:
+ name = tensor_map[name[:-5]] + ".bias"
+ else:
+ print("Can not map tensor '" + name + "'")
+ sys.exit()
+
+ n_dims = len(data.shape)
+ data_dtype = data.dtype
+
+ # if f32 desired, convert any float16 to float32
+ if ftype == 0 and data_dtype == np.float16:
+ data = data.astype(np.float32)
+
+ # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+ if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+ data = data.astype(np.float32)
+
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
+ if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+ data = data.astype(np.float16)
+
+ print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
+
+ gguf_writer.add_tensor(name, data)
+
+
+print("gguf: write header")
+gguf_writer.write_header_to_file()
+print("gguf: write metadata")
+gguf_writer.write_kv_data_to_file()
+print("gguf: write tensors")
+gguf_writer.write_tensors_to_file()
+
+gguf_writer.close()
+
+
+print("gguf: model successfully exported to '" + fname_out + "'")
+print("")