summaryrefslogtreecommitdiff
path: root/convert-lora-to-ggml.py
diff options
context:
space:
mode:
Diffstat (limited to 'convert-lora-to-ggml.py')
-rwxr-xr-xconvert-lora-to-ggml.py183
1 files changed, 92 insertions, 91 deletions
diff --git a/convert-lora-to-ggml.py b/convert-lora-to-ggml.py
index 53bb8a3d..35ce152f 100755
--- a/convert-lora-to-ggml.py
+++ b/convert-lora-to-ggml.py
@@ -47,95 +47,96 @@ def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_ty
fout.seek((fout.tell() + 31) & -32)
-if len(sys.argv) < 2:
- print(f"Usage: python {sys.argv[0]} <path> [arch]")
- print(
- "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
- )
- print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
- sys.exit(1)
-
-input_json = os.path.join(sys.argv[1], "adapter_config.json")
-input_model = os.path.join(sys.argv[1], "adapter_model.bin")
-output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
-
-model = torch.load(input_model, map_location="cpu")
-arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
-
-if arch_name not in gguf.MODEL_ARCH_NAMES.values():
- print(f"Error: unsupported architecture {arch_name}")
- sys.exit(1)
-
-arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
-name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
-
-with open(input_json, "r") as f:
- params = json.load(f)
-
-if params["peft_type"] != "LORA":
- print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
- sys.exit(1)
-
-if params["fan_in_fan_out"] is True:
- print("Error: param fan_in_fan_out is not supported")
- sys.exit(1)
-
-if params["bias"] is not None and params["bias"] != "none":
- print("Error: param bias is not supported")
- sys.exit(1)
-
-# TODO: these seem to be layers that have been trained but without lora.
-# doesn't seem widely used but eventually should be supported
-if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
- print("Error: param modules_to_save is not supported")
- sys.exit(1)
-
-with open(output_path, "wb") as fout:
- fout.truncate()
-
- write_file_header(fout, params)
- for k, v in model.items():
- orig_k = k
- if k.endswith(".default.weight"):
- k = k.replace(".default.weight", ".weight")
- if k in ["llama_proj.weight", "llama_proj.bias"]:
- continue
- if k.endswith("lora_A.weight"):
- if v.dtype != torch.float16 and v.dtype != torch.float32:
+if __name__ == '__main__':
+ if len(sys.argv) < 2:
+ print(f"Usage: python {sys.argv[0]} <path> [arch]")
+ print(
+ "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
+ )
+ print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
+ sys.exit(1)
+
+ input_json = os.path.join(sys.argv[1], "adapter_config.json")
+ input_model = os.path.join(sys.argv[1], "adapter_model.bin")
+ output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
+
+ model = torch.load(input_model, map_location="cpu")
+ arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
+
+ if arch_name not in gguf.MODEL_ARCH_NAMES.values():
+ print(f"Error: unsupported architecture {arch_name}")
+ sys.exit(1)
+
+ arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
+ name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
+
+ with open(input_json, "r") as f:
+ params = json.load(f)
+
+ if params["peft_type"] != "LORA":
+ print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
+ sys.exit(1)
+
+ if params["fan_in_fan_out"] is True:
+ print("Error: param fan_in_fan_out is not supported")
+ sys.exit(1)
+
+ if params["bias"] is not None and params["bias"] != "none":
+ print("Error: param bias is not supported")
+ sys.exit(1)
+
+ # TODO: these seem to be layers that have been trained but without lora.
+ # doesn't seem widely used but eventually should be supported
+ if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
+ print("Error: param modules_to_save is not supported")
+ sys.exit(1)
+
+ with open(output_path, "wb") as fout:
+ fout.truncate()
+
+ write_file_header(fout, params)
+ for k, v in model.items():
+ orig_k = k
+ if k.endswith(".default.weight"):
+ k = k.replace(".default.weight", ".weight")
+ if k in ["llama_proj.weight", "llama_proj.bias"]:
+ continue
+ if k.endswith("lora_A.weight"):
+ if v.dtype != torch.float16 and v.dtype != torch.float32:
+ v = v.float()
+ v = v.T
+ else:
v = v.float()
- v = v.T
- else:
- v = v.float()
-
- t = v.detach().numpy()
-
- prefix = "base_model.model."
- if k.startswith(prefix):
- k = k[len(prefix) :]
-
- lora_suffixes = (".lora_A.weight", ".lora_B.weight")
- if k.endswith(lora_suffixes):
- suffix = k[-len(lora_suffixes[0]):]
- k = k[: -len(lora_suffixes[0])]
- else:
- print(f"Error: unrecognized tensor name {orig_k}")
- sys.exit(1)
-
- tname = name_map.get_name(k)
- if tname is None:
- print(f"Error: could not map tensor name {orig_k}")
- print(" Note: the arch parameter must be specified if the model is not llama")
- sys.exit(1)
-
- if suffix == ".lora_A.weight":
- tname += ".weight.loraA"
- elif suffix == ".lora_B.weight":
- tname += ".weight.loraB"
- else:
- assert False
-
- print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
- write_tensor_header(fout, tname, t.shape, t.dtype)
- t.tofile(fout)
-
-print(f"Converted {input_json} and {input_model} to {output_path}")
+
+ t = v.detach().numpy()
+
+ prefix = "base_model.model."
+ if k.startswith(prefix):
+ k = k[len(prefix) :]
+
+ lora_suffixes = (".lora_A.weight", ".lora_B.weight")
+ if k.endswith(lora_suffixes):
+ suffix = k[-len(lora_suffixes[0]):]
+ k = k[: -len(lora_suffixes[0])]
+ else:
+ print(f"Error: unrecognized tensor name {orig_k}")
+ sys.exit(1)
+
+ tname = name_map.get_name(k)
+ if tname is None:
+ print(f"Error: could not map tensor name {orig_k}")
+ print(" Note: the arch parameter must be specified if the model is not llama")
+ sys.exit(1)
+
+ if suffix == ".lora_A.weight":
+ tname += ".weight.loraA"
+ elif suffix == ".lora_B.weight":
+ tname += ".weight.loraB"
+ else:
+ assert False
+
+ print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
+ write_tensor_header(fout, tname, t.shape, t.dtype)
+ t.tofile(fout)
+
+ print(f"Converted {input_json} and {input_model} to {output_path}")