summaryrefslogtreecommitdiff
path: root/convert-refact-hf-to-gguf.py
diff options
context:
space:
mode:
Diffstat (limited to 'convert-refact-hf-to-gguf.py')
-rwxr-xr-xconvert-refact-hf-to-gguf.py71
1 files changed, 8 insertions, 63 deletions
diff --git a/convert-refact-hf-to-gguf.py b/convert-refact-hf-to-gguf.py
index e0cd417d..bfeabc08 100755
--- a/convert-refact-hf-to-gguf.py
+++ b/convert-refact-hf-to-gguf.py
@@ -17,33 +17,6 @@ if "NO_LOCAL_GGUF" not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
import gguf
-
-def bytes_to_unicode():
- # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
- """
- Returns list of utf-8 byte and a corresponding list of unicode strings.
- The reversible bpe codes work on unicode strings.
- This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
- When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
- This is a significant percentage of your normal, say, 32K bpe vocab.
- To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
- And avoids mapping to whitespace/control characters the bpe code barfs on.
- """
- bs = (
- list(range(ord("!"), ord("~") + 1))
- + list(range(ord("¡"), ord("¬") + 1))
- + list(range(ord("®"), ord("ÿ") + 1))
- )
- cs = bs[:]
- n = 0
- for b in range(2**8):
- if b not in bs:
- bs.append(b)
- cs.append(2**8 + n)
- n += 1
- return dict(zip(bs, (chr(n) for n in cs)))
-
-
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
@@ -153,53 +126,25 @@ tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
-tokenizer_json_file = dir_model / "tokenizer.json"
-if not tokenizer_json_file.is_file():
- print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr)
- sys.exit(1)
-
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
-with open(tokenizer_json_file, "r", encoding="utf-8") as f:
- tokenizer_json = json.load(f)
-
print("gguf: get gpt2 tokenizer vocab")
+# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
+tokenizer = AutoTokenizer.from_pretrained(dir_model)
+
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
-vocab_size = (
- hparams["vocab_size"]
- if "vocab_size" in hparams
- else len(tokenizer_json["model"]["vocab"])
-)
-
-tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
+vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
+assert max(tokenizer.vocab.values()) < vocab_size
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-byte_encoder = bytes_to_unicode()
-byte_decoder = {v: k for k, v in byte_encoder.items()}
for i in range(vocab_size):
- if i in reverse_vocab:
- text = reverse_vocab[i]
- try:
- text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
- except KeyError:
- text = bytearray()
- for c in reverse_vocab[i]:
- if ord(c) < 256: # single byte character
- text.append(byte_decoder[ord(c)])
- else: # multibyte special token character
- text.extend(c.encode("utf-8"))
- else:
- print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
- pad_token = f"[PAD{i}]".encode("utf8")
- text = bytearray(pad_token)
-
- tokens.append(text)
- scores.append(0.0) # dymmy
- toktypes.append(gguf.TokenType.NORMAL) # dummy
+ tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
+ scores.append(0.0) # dummy
+ toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)