diff options
Diffstat (limited to 'convert.py')
-rwxr-xr-x | convert.py | 126 |
1 files changed, 73 insertions, 53 deletions
@@ -332,6 +332,9 @@ class Params: # class BpeVocab: + tokenizer_model = "gpt2" + name = "bpe" + def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None: self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read()) if isinstance(self.bpe_tokenizer.get('model'), dict): @@ -390,6 +393,9 @@ class BpeVocab: class SentencePieceVocab: + tokenizer_model = "llama" + name = "spm" + def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None: self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) added_tokens: dict[str, int] @@ -453,6 +459,9 @@ class SentencePieceVocab: class HfVocab: + tokenizer_model = "llama" + name = "hfft" + def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None = None) -> None: try: from transformers import AutoTokenizer @@ -553,7 +562,15 @@ class HfVocab: return f"<HfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>" -Vocab: TypeAlias = "BpeVocab | SentencePieceVocab | HfVocab" +class NoVocab: + tokenizer_model = "no_vocab" + name = "no_vocab" + + def __repr__(self) -> str: + return "<NoVocab for a model without integrated vocabulary>" + + +Vocab: TypeAlias = "BpeVocab | SentencePieceVocab | HfVocab | NoVocab" # @@ -935,8 +952,10 @@ def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> N # Handle special case where the model's vocab size is not set if params.n_vocab == -1: raise ValueError( - f"The model's vocab size is set to -1 in params.json. Please update it manually. Maybe {vocab.vocab_size}?" + f"The model's vocab size is set to -1 in params.json. Please update it manually.{f' Maybe {vocab.vocab_size}?' if hasattr(vocab, 'vocab_size') else ''}" ) + if isinstance(vocab, NoVocab): + return # model has no vocab # Check for a vocab size mismatch if params.n_vocab == vocab.vocab_size: @@ -977,6 +996,7 @@ class OutputFile: name = str(params.path_model.parent).split('/')[-1] self.gguf.add_name (name) + self.gguf.add_vocab_size (params.n_vocab) self.gguf.add_context_length (params.n_ctx) self.gguf.add_embedding_length (params.n_embd) self.gguf.add_block_count (params.n_layer) @@ -1013,21 +1033,9 @@ class OutputFile: if params.ftype is not None: self.gguf.add_file_type(params.ftype) - def handle_tokenizer_model(self, vocab: Vocab) -> str: - # Map the vocab types to the supported tokenizer models - tokenizer_model = { - SentencePieceVocab: "llama", - HfVocab: "llama", - BpeVocab: "gpt2", - }.get(type(vocab)) - - # Block if vocab type is not predefined - if tokenizer_model is None: - raise ValueError("Unknown vocab type: Not supported") - - return tokenizer_model - def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]: + assert not isinstance(vocab, NoVocab) + tokens = [] scores = [] toktypes = [] @@ -1043,11 +1051,8 @@ class OutputFile: return tokens, scores, toktypes def add_meta_vocab(self, vocab: Vocab) -> None: - # Handle the tokenizer model - tokenizer_model = self.handle_tokenizer_model(vocab) - # Ensure that tokenizer_model is added to the GGUF model - self.gguf.add_tokenizer_model(tokenizer_model) + self.gguf.add_tokenizer_model(vocab.tokenizer_model) # Extract model vocabulary for model conversion tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab) @@ -1074,6 +1079,26 @@ class OutputFile: def write_tensor_info(self) -> None: self.gguf.write_ti_data_to_file() + def write_tensor_data(self, ftype: GGMLFileType, model: LazyModel, concurrency: int) -> None: + ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency=concurrency) + if ftype == GGMLFileType.MostlyQ8_0: + ndarrays = bounded_parallel_map( + OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency, + use_processpool_executor=True, + ) + else: + ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner) + + start = time.time() + for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): + elapsed = time.time() - start + size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape) + padi = len(str(len(model))) + print( + f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}" + ) + self.gguf.write_tensor_data(ndarray) + def close(self) -> None: self.gguf.close() @@ -1082,7 +1107,7 @@ class OutputFile: fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, ) -> None: - check_vocab_size(params, vocab, pad_vocab = pad_vocab) + check_vocab_size(params, vocab, pad_vocab=pad_vocab) of = OutputFile(fname_out, endianess=endianess) @@ -1120,8 +1145,11 @@ class OutputFile: # meta data of.add_meta_arch(params) - of.add_meta_vocab(vocab) - of.add_meta_special_vocab(svocab) + if isinstance(vocab, NoVocab): + of.gguf.add_tokenizer_model(vocab.tokenizer_model) + else: + of.add_meta_vocab(vocab) + of.add_meta_special_vocab(svocab) # tensor info for name, lazy_tensor in model.items(): @@ -1131,24 +1159,7 @@ class OutputFile: of.write_tensor_info() # tensor data - ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency = concurrency) - if ftype == GGMLFileType.MostlyQ8_0: - ndarrays = bounded_parallel_map( - OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency, - use_processpool_executor=True, - ) - else: - ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner) - - start = time.time() - for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): - elapsed = time.time() - start - size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape) - padi = len(str(len(model))) - print( - f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}" - ) - of.gguf.write_tensor_data(ndarray) + of.write_tensor_data(ftype, model, concurrency) of.close() @@ -1309,8 +1320,8 @@ class VocabFactory: return vtype, path raise FileNotFoundError(f"Could not find any of {[self._FILES[vt] for vt in vocab_types]}") - def _create_special_vocab(self, vocab: Vocab, vocabtype: str, model_parent_path: Path) -> gguf.SpecialVocab: - load_merges = vocabtype == "bpe" + def _create_special_vocab(self, vocab: Vocab, model_parent_path: Path) -> gguf.SpecialVocab: + load_merges = vocab.name == "bpe" n_vocab = vocab.vocab_size if hasattr(vocab, "vocab_size") else None return gguf.SpecialVocab( model_parent_path, @@ -1319,30 +1330,34 @@ class VocabFactory: n_vocab=n_vocab, ) - def load_vocab(self, vocab_types: list[str], model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]: + def _create_vocab_by_path(self, vocab_types: list[str]) -> Vocab: vocab_type, path = self._select_file(vocab_types) print(f"Loading vocab file {path!r}, type {vocab_type!r}") added_tokens_path = path.parent / "added_tokens.json" - vocab: Vocab if vocab_type == "bpe": - vocab = BpeVocab( + return BpeVocab( path, added_tokens_path if added_tokens_path.exists() else None ) - elif vocab_type == "spm": - vocab = SentencePieceVocab( + if vocab_type == "spm": + return SentencePieceVocab( path, added_tokens_path if added_tokens_path.exists() else None ) - elif vocab_type == "hfft": - vocab = HfVocab( + if vocab_type == "hfft": + return HfVocab( path.parent, added_tokens_path if added_tokens_path.exists() else None ) + raise ValueError(vocab_type) + + def load_vocab(self, vocab_types: list[str], model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]: + vocab: Vocab + if len(vocab_types) == 1 and "no_vocab" in vocab_types: + vocab = NoVocab() else: - raise ValueError(vocab_type) + vocab = self._create_vocab_by_path(vocab_types) # FIXME: Respect --vocab-dir? special_vocab = self._create_special_vocab( vocab, - vocab_type, model_parent_path, ) return vocab, special_vocab @@ -1380,6 +1395,7 @@ def main(args_in: list[str] | None = None) -> None: parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") + parser.add_argument("--no-vocab", action="store_true", help="store model without the vocab") parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)") parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft") @@ -1392,6 +1408,10 @@ def main(args_in: list[str] | None = None) -> None: parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing") args = parser.parse_args(args_in) + if args.no_vocab: + if args.vocab_only: + raise ValueError("no need to specify --vocab-only if using --no-vocab") + args.vocab_type = "no_vocab" if args.dump_single: model_plus = lazy_load_file(args.model) @@ -1442,7 +1462,7 @@ def main(args_in: list[str] | None = None) -> None: print(f"Wrote {outfile}") return - if model_plus.vocab is not None and args.vocab_dir is None: + if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab: vocab = model_plus.vocab print(f"Vocab info: {vocab}") |