diff options
Diffstat (limited to 'convert_hf_to_gguf.py')
-rw-r--r-- | convert_hf_to_gguf.py | 57 |
1 files changed, 57 insertions, 0 deletions
diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index b0a82c80..76f269b3 100644 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -639,6 +639,9 @@ class Model: if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec": # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base res = "seed-coder" + if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890": + # ref: https://huggingface.co/moonshotai/Kimi-K2-Base + res = "kimi-k2" if res is None: logger.warning("\n") @@ -3379,6 +3382,60 @@ class DeepseekV2Model(Model): model_arch = gguf.MODEL_ARCH.DEEPSEEK2 def set_vocab(self): + + if self.hparams["vocab_size"] == 163840: # Kimi-K2 model + from transformers import AutoTokenizer + + tokenizer = AutoTokenizer.from_pretrained( + self.dir_model, trust_remote_code=True + ) + tokpre = self.get_vocab_base_pre(tokenizer) + + # Build merges list using the approach similar to HunYuanMoE + merges = [] + vocab = {} + mergeable_ranks = tokenizer.model._mergeable_ranks + for token, rank in mergeable_ranks.items(): + vocab[QwenModel.token_bytes_to_string(token)] = rank + if len(token) == 1: + continue + merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank) + if len(merged) == 2: + merges.append( + " ".join(map(QwenModel.token_bytes_to_string, merged)) + ) + + # Build token list + vocab_size = self.hparams["vocab_size"] + special_tokens = tokenizer.special_tokens + reverse_vocab = { + id_: encoded_tok + for encoded_tok, id_ in {**vocab, **special_tokens}.items() + } + tokens: list[str] = [] + toktypes: list[int] = [] + + for i in range(vocab_size): + if i not in reverse_vocab: + tokens.append(f"[PAD{i}]") + toktypes.append(gguf.TokenType.UNUSED) + else: + token = reverse_vocab[i] + tokens.append(token) + if i in special_tokens.values(): + toktypes.append(gguf.TokenType.CONTROL) + else: + toktypes.append(gguf.TokenType.NORMAL) + + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + self.gguf_writer.add_token_merges(merges) + + special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False) + special_vocab.add_to_gguf(self.gguf_writer) + else: self._set_vocab_gpt2() def set_gguf_parameters(self): |