summaryrefslogtreecommitdiff
path: root/convert_hf_to_gguf.py
diff options
context:
space:
mode:
Diffstat (limited to 'convert_hf_to_gguf.py')
-rwxr-xr-xconvert_hf_to_gguf.py3706
1 files changed, 3706 insertions, 0 deletions
diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py
new file mode 100755
index 00000000..7a74cc20
--- /dev/null
+++ b/convert_hf_to_gguf.py
@@ -0,0 +1,3706 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+
+from __future__ import annotations
+
+import logging
+import argparse
+import contextlib
+import json
+import os
+import re
+import sys
+from enum import IntEnum
+from pathlib import Path
+from hashlib import sha256
+from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
+
+import math
+import numpy as np
+import torch
+
+if TYPE_CHECKING:
+ from torch import Tensor
+
+if 'NO_LOCAL_GGUF' not in os.environ:
+ sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
+import gguf
+
+logger = logging.getLogger("hf-to-gguf")
+
+
+###### MODEL DEFINITIONS ######
+
+class SentencePieceTokenTypes(IntEnum):
+ NORMAL = 1
+ UNKNOWN = 2
+ CONTROL = 3
+ USER_DEFINED = 4
+ UNUSED = 5
+ BYTE = 6
+
+
+AnyModel = TypeVar("AnyModel", bound="type[Model]")
+
+
+class Model:
+ _model_classes: dict[str, type[Model]] = {}
+
+ dir_model: Path
+ ftype: gguf.LlamaFileType
+ fname_out: Path
+ is_big_endian: bool
+ endianess: gguf.GGUFEndian
+ use_temp_file: bool
+ lazy: bool
+ part_names: list[str]
+ is_safetensors: bool
+ hparams: dict[str, Any]
+ block_count: int
+ tensor_map: gguf.TensorNameMap
+ tensor_names: set[str] | None
+ gguf_writer: gguf.GGUFWriter
+ model_name: str | None
+ metadata_override: Path | None
+ dir_model_card: Path
+
+ # subclasses should define this!
+ model_arch: gguf.MODEL_ARCH
+
+ def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
+ use_temp_file: bool = False, eager: bool = False,
+ metadata_override: Path | None = None, model_name: str | None = None,
+ split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
+ if type(self) is Model:
+ raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
+
+ self.dir_model = dir_model
+ self.ftype = ftype
+ self.fname_out = fname_out
+ self.is_big_endian = is_big_endian
+ self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
+ self.use_temp_file = use_temp_file
+ self.lazy = not eager
+ self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
+ self.is_safetensors = len(self.part_names) > 0
+ if not self.is_safetensors:
+ self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
+ self.hparams = Model.load_hparams(self.dir_model)
+ self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
+ self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
+ self.tensor_names = None
+ self.metadata_override = metadata_override
+ self.model_name = model_name
+ self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
+
+ # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
+ if self.ftype == gguf.LlamaFileType.GUESSED:
+ # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
+ _, first_tensor = next(self.get_tensors())
+ if first_tensor.dtype == torch.float16:
+ logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
+ self.ftype = gguf.LlamaFileType.MOSTLY_F16
+ else:
+ logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
+ self.ftype = gguf.LlamaFileType.MOSTLY_BF16
+
+ # Configure GGUF Writer
+ self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
+ split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
+
+ @classmethod
+ def __init_subclass__(cls):
+ # can't use an abstract property, because overriding it without type errors
+ # would require using decorated functions instead of simply defining the property
+ if "model_arch" not in cls.__dict__:
+ raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
+
+ def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
+ key = next((k for k in keys if k in self.hparams), None)
+ if key is not None:
+ return self.hparams[key]
+ if optional:
+ return None
+ raise KeyError(f"could not find any of: {keys}")
+
+ def set_vocab(self):
+ self._set_vocab_gpt2()
+
+ def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
+ tensor_names_from_parts: set[str] = set()
+
+ if len(self.part_names) > 1:
+ self.tensor_names = set()
+ index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
+ index_name += ".index.json"
+ logger.info(f"gguf: loading model weight map from '{index_name}'")
+ with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
+ index: dict[str, Any] = json.load(f)
+ weight_map = index.get("weight_map")
+ if weight_map is None or not isinstance(weight_map, dict):
+ raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
+ self.tensor_names.update(weight_map.keys())
+ else:
+ self.tensor_names = tensor_names_from_parts
+
+ for part_name in self.part_names:
+ logger.info(f"gguf: loading model part '{part_name}'")
+ ctx: ContextManager[Any]
+ if self.is_safetensors:
+ from safetensors import safe_open
+ ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
+ else:
+ ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
+
+ with ctx as model_part:
+ tensor_names_from_parts.update(model_part.keys())
+
+ for name in model_part.keys():
+ if self.is_safetensors:
+ if self.lazy:
+ data = model_part.get_slice(name)
+ data = LazyTorchTensor.from_safetensors_slice(data)
+ else:
+ data = model_part.get_tensor(name)
+ else:
+ data = model_part[name]
+ if self.lazy:
+ data = LazyTorchTensor.from_eager(data)
+ yield name, data
+
+ # only verify tensor name presence; it doesn't matter if they are not in the right files
+ if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
+ raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
+
+ def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
+ if key not in gguf.MODEL_TENSORS[self.model_arch]:
+ raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
+ name: str = gguf.TENSOR_NAMES[key]
+ if "{bid}" in name:
+ assert bid is not None
+ name = name.format(bid=bid)
+ return name + suffix
+
+ def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
+ if key not in gguf.MODEL_TENSORS[self.model_arch]:
+ return False
+ key_name: str = gguf.TENSOR_NAMES[key]
+ if "{bid}" in key_name:
+ if bid is None:
+ return False
+ key_name = key_name.format(bid=bid)
+ else:
+ if bid is not None:
+ return False
+ return name == (key_name + suffix)
+
+ def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
+ new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
+ if new_name is None:
+ raise ValueError(f"Can not map tensor {name!r}")
+ return new_name
+
+ def set_gguf_parameters(self):
+ self.gguf_writer.add_block_count(self.block_count)
+
+ if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
+ self.gguf_writer.add_context_length(n_ctx)
+ logger.info(f"gguf: context length = {n_ctx}")
+
+ n_embd = self.find_hparam(["hidden_size", "n_embd"])
+ self.gguf_writer.add_embedding_length(n_embd)
+ logger.info(f"gguf: embedding length = {n_embd}")
+
+ if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
+ self.gguf_writer.add_feed_forward_length(n_ff)
+ logger.info(f"gguf: feed forward length = {n_ff}")
+
+ n_head = self.find_hparam(["num_attention_heads", "n_head"])
+ self.gguf_writer.add_head_count(n_head)
+ logger.info(f"gguf: head count = {n_head}")
+
+ if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
+ self.gguf_writer.add_head_count_kv(n_head_kv)
+ logger.info(f"gguf: key-value head count = {n_head_kv}")
+
+ if (rope_theta := self.hparams.get("rope_theta")) is not None:
+ self.gguf_writer.add_rope_freq_base(rope_theta)
+ logger.info(f"gguf: rope theta = {rope_theta}")
+ if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
+ self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
+ logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
+ if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
+ self.gguf_writer.add_layer_norm_eps(f_norm_eps)
+ logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
+ if (n_experts := self.hparams.get("num_local_experts")) is not None:
+ self.gguf_writer.add_expert_count(n_experts)
+ logger.info(f"gguf: expert count = {n_experts}")
+ if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
+ self.gguf_writer.add_expert_used_count(n_experts_used)
+ logger.info(f"gguf: experts used count = {n_experts_used}")
+
+ if (head_dim := self.hparams.get("head_dim")) is not None:
+ self.gguf_writer.add_key_length(head_dim)
+ self.gguf_writer.add_value_length(head_dim)
+
+ self.gguf_writer.add_file_type(self.ftype)
+ logger.info(f"gguf: file type = {self.ftype}")
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+ def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
+ del name, new_name, bid, n_dims # unused
+
+ return False
+
+ def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
+ del name, new_name, bid, n_dims # unused
+
+ return False
+
+ def prepare_tensors(self):
+ max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
+
+ for name, data_torch in self.get_tensors():
+ # we don't need these
+ if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
+ continue
+
+ old_dtype = data_torch.dtype
+
+ # convert any unsupported data types to float32
+ if data_torch.dtype not in (torch.float16, torch.float32):
+ data_torch = data_torch.to(torch.float32)
+
+ # use the first number-like part of the tensor name as the block id
+ bid = None
+ for part in name.split("."):
+ if part.isdecimal():
+ bid = int(part)
+ break
+
+ for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
+ data: np.ndarray # type hint
+ n_dims = len(data.shape)
+ data_dtype = data.dtype
+ data_qtype: gguf.GGMLQuantizationType | None = None
+
+ # when both are True, f32 should win
+ extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
+ extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
+
+ # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
+ # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
+ extra_f32 = any(cond for cond in (
+ extra_f32,
+ n_dims == 1,
+ new_name.endswith("_norm.weight"),
+ ))
+
+ # Some tensor types are always in float32
+ extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
+ gguf.MODEL_TENSOR.FFN_GATE_INP,
+ gguf.MODEL_TENSOR.POS_EMBD,
+ gguf.MODEL_TENSOR.TOKEN_TYPES,
+ ))
+
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
+ extra_f16 = any(cond for cond in (
+ extra_f16,
+ (name.endswith(".weight") and n_dims >= 2),
+ ))
+
+ if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
+ if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
+ data = gguf.quantize_bf16(data)
+ assert data.dtype == np.int16
+ data_qtype = gguf.GGMLQuantizationType.BF16
+
+ elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
+ data = gguf.quantize_q8_0(data)
+ assert data.dtype == np.uint8
+ data_qtype = gguf.GGMLQuantizationType.Q8_0
+
+ else: # default to float16 for quantized tensors
+ if data_dtype != np.float16:
+ data = data.astype(np.float16)
+ data_qtype = gguf.GGMLQuantizationType.F16
+
+ if data_qtype is None: # by default, convert to float32
+ if data_dtype != np.float32:
+ data = data.astype(np.float32)
+ data_qtype = gguf.GGMLQuantizationType.F32
+
+ shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
+
+ # reverse shape to make it similar to the internal ggml dimension order
+ shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
+
+ # n_dims is implicit in the shape
+ logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
+
+ self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
+
+ def set_type(self):
+ self.gguf_writer.add_type(gguf.GGUFType.MODEL)
+
+ def prepare_metadata(self, vocab_only: bool):
+
+ total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
+
+ self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
+
+ # Fallback to model directory name if metadata name is still missing
+ if self.metadata.name is None:
+ self.metadata.name = self.dir_model.name
+
+ # Generate parameter weight class (useful for leader boards) if not yet determined
+ if self.metadata.size_label is None and total_params > 0:
+ self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
+
+ # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
+ output_type: str = self.ftype.name.partition("_")[2]
+
+ # Filename Output
+ if self.fname_out.is_dir():
+ # Generate default filename based on model specification and available metadata
+ if not vocab_only:
+ fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
+ else:
+ fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
+
+ # Use the default filename
+ self.fname_out = self.fname_out / f"{fname_default}.gguf"
+ else:
+ # Output path is a custom defined templated filename
+ # Note: `not is_dir()` is used because `.is_file()` will not detect
+ # file template strings as it doesn't actually exist as a file
+
+ # Process templated file name with the output ftype, useful with the "auto" ftype
+ self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
+
+ self.set_type()
+
+ logger.info("Set meta model")
+ self.metadata.set_gguf_meta_model(self.gguf_writer)
+
+ logger.info("Set model parameters")
+ self.set_gguf_parameters()
+
+ logger.info("Set model tokenizer")
+ self.set_vocab()
+
+ logger.info("Set model quantization version")
+ self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
+
+ def write(self):
+ self.prepare_tensors()
+ self.prepare_metadata(vocab_only=False)
+ self.gguf_writer.write_header_to_file(path=self.fname_out)
+ self.gguf_writer.write_kv_data_to_file()
+ self.gguf_writer.write_tensors_to_file(progress=True)
+ self.gguf_writer.close()
+
+ def write_vocab(self):
+ if len(self.gguf_writer.tensors) != 1:
+ raise ValueError('Splitting the vocabulary is not supported')
+
+ self.prepare_metadata(vocab_only=True)
+ self.gguf_writer.write_header_to_file(path=self.fname_out)
+ self.gguf_writer.write_kv_data_to_file()
+ self.gguf_writer.close()
+
+ @staticmethod
+ def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
+ part_names: list[str] = []
+ for filename in os.listdir(dir_model):
+ if filename.startswith(prefix) and filename.endswith(suffix):
+ part_names.append(filename)
+
+ part_names.sort()
+
+ return part_names
+
+ @staticmethod
+ def load_hparams(dir_model: Path):
+ with open(dir_model / "config.json", "r", encoding="utf-8") as f:
+ return json.load(f)
+
+ @classmethod
+ def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
+ assert names
+
+ def func(modelcls: AnyModel) -> AnyModel:
+ for name in names:
+ cls._model_classes[name] = modelcls
+ return modelcls
+ return func
+
+ @classmethod
+ def from_model_architecture(cls, arch: str) -> type[Model]:
+ try:
+ return cls._model_classes[arch]
+ except KeyError:
+ raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
+
+ def does_token_look_special(self, token: str | bytes) -> bool:
+ if isinstance(token, (bytes, bytearray)):
+ token_text = token.decode(encoding="utf-8")
+ elif isinstance(token, memoryview):
+ token_text = token.tobytes().decode(encoding="utf-8")
+ else:
+ token_text = token
+
+ # Some models mark some added tokens which ought to be control tokens as not special.
+ # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
+ seems_special = token_text in (
+ "<pad>", # deepseek-coder
+ "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
+ )
+
+ seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
+ seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
+
+ # TODO: should these be marked as UNUSED instead? (maybe not)
+ seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
+
+ return seems_special
+
+ # used for GPT-2 BPE and WordPiece vocabs
+ def get_vocab_base(self) -> tuple[list[str], list[int], str]:
+ tokens: list[str] = []
+ toktypes: list[int] = []
+
+ from transformers import AutoTokenizer
+ tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
+ vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
+ assert max(tokenizer.vocab.values()) < vocab_size
+
+ tokpre = self.get_vocab_base_pre(tokenizer)
+
+ reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
+ added_vocab = tokenizer.get_added_vocab()
+
+ for i in range(vocab_size):
+ if i not in reverse_vocab:
+ tokens.append(f"[PAD{i}]")
+ toktypes.append(gguf.TokenType.UNUSED)
+ else:
+ token: str = reverse_vocab[i]
+ if token in added_vocab:
+ if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
+ toktypes.append(gguf.TokenType.CONTROL)
+ else:
+ token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
+ toktypes.append(gguf.TokenType.USER_DEFINED)
+ else:
+ toktypes.append(gguf.TokenType.NORMAL)
+ tokens.append(token)
+
+ return tokens, toktypes, tokpre
+
+ # NOTE: this function is generated by convert_hf_to_gguf_update.py
+ # do not modify it manually!
+ # ref: https://github.com/ggerganov/llama.cpp/pull/6920
+ # Marker: Start get_vocab_base_pre
+ def get_vocab_base_pre(self, tokenizer) -> str:
+ # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
+ # is specific for the BPE pre-tokenizer used by the model
+ # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
+ # use in llama.cpp to implement the same pre-tokenizer
+
+ chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
+
+ chktok = tokenizer.encode(chktxt)
+ chkhsh = sha256(str(chktok).encode()).hexdigest()
+
+ logger.debug(f"chktok: {chktok}")
+ logger.debug(f"chkhsh: {chkhsh}")
+
+ res = None
+
+ # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
+ # or pull the latest version of the model from Huggingface
+ # don't edit the hashes manually!
+ if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
+ # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
+ res = "llama-bpe"
+ if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
+ # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
+ res = "deepseek-llm"
+ if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
+ # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
+ res = "deepseek-coder"
+ if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
+ # ref: https://huggingface.co/tiiuae/falcon-7b
+ res = "falcon"
+ if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
+ # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
+ res = "bert-bge"
+ if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
+ # ref: https://huggingface.co/mosaicml/mpt-7b
+ res = "mpt"
+ if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
+ # ref: https://huggingface.co/bigcode/starcoder2-3b
+ res = "starcoder"
+ if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
+ # ref: https://huggingface.co/openai-community/gpt2
+ res = "gpt-2"
+ if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
+ # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
+ res = "stablelm2"
+ if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
+ # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
+ res = "refact"
+ if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
+ # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
+ res = "command-r"
+ if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
+ # ref: https://huggingface.co/Qwen/Qwen1.5-7B
+ res = "qwen2"
+ if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
+ # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
+ res = "olmo"
+ if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
+ # ref: https://huggingface.co/databricks/dbrx-base
+ res = "dbrx"
+ if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
+ # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
+ res = "jina-v2-en"
+ if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
+ # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
+ res = "jina-v2-es"
+ if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
+ # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
+ res = "jina-v2-de"
+ if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
+ # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
+ res = "smaug-bpe"
+ if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
+ # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
+ res = "poro-chat"
+ if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
+ # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
+ res = "jina-v2-code"
+ if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
+ # ref: https://huggingface.co/THUDM/glm-4-9b-chat
+ res = "chatglm-bpe"
+ if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
+ # ref: https://huggingface.co/LumiOpen/Viking-7B
+ res = "viking"
+ if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
+ # ref: https://huggingface.co/core42/jais-13b
+ res = "jais"
+ if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
+ # ref: https://huggingface.co/WisdomShell/CodeShell-7B
+ res = "codeshell"
+ if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
+ # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
+ res = "tekken"
+ if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
+ # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
+ res = "smollm"
+
+ if res is None:
+ logger.warning("\n")
+ logger.warning("**************************************************************************************")
+ logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
+ logger.warning("** There are 2 possible reasons for this:")
+ logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
+ logger.warning("** - the pre-tokenization config has changed upstream")
+ logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
+ logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
+ logger.warning("**")
+ logger.warning(f"** chkhsh: {chkhsh}")
+ logger.warning("**************************************************************************************")
+ logger.warning("\n")
+ raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
+
+ logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
+ logger.debug(f"chkhsh: {chkhsh}")
+
+ return res
+ # Marker: End get_vocab_base_pre
+
+ def _set_vocab_gpt2(self) -> None:
+ tokens, toktypes, tokpre = self.get_vocab_base()
+ self.gguf_writer.add_tokenizer_model("gpt2")
+ self.gguf_writer.add_tokenizer_pre(tokpre)
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def _set_vocab_qwen(self):
+ dir_model = self.dir_model
+ hparams = self.hparams
+ tokens: list[str] = []
+ toktypes: list[int] = []
+
+ from transformers import AutoTokenizer
+ tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
+ vocab_size = hparams["vocab_size"]
+ assert max(tokenizer.get_vocab().values()) < vocab_size
+
+ tokpre = self.get_vocab_base_pre(tokenizer)
+
+ merges = []
+ vocab = {}
+ mergeable_ranks = tokenizer.mergeable_ranks
+ for token, rank in mergeable_ranks.items():
+ vocab[QwenModel.token_bytes_to_string(token)] = rank
+ if len(token) == 1:
+ continue
+ merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
+ assert len(merged) == 2
+ merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
+
+ # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
+ added_vocab = tokenizer.special_tokens
+ reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
+
+ for i in range(vocab_size):
+ if i not in reverse_vocab:
+ tokens.append(f"[PAD{i}]")
+ toktypes.append(gguf.TokenType.UNUSED)
+ elif reverse_vocab[i] in added_vocab:
+ tokens.append(reverse_vocab[i])
+ toktypes.append(gguf.TokenType.CONTROL)
+ else:
+ tokens.append(reverse_vocab[i])
+ toktypes.append(gguf.TokenType.NORMAL)
+
+ self.gguf_writer.add_tokenizer_model("gpt2")
+ self.gguf_writer.add_tokenizer_pre(tokpre)
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
+ special_vocab.merges = merges
+ # only add special tokens when they were not already loaded from config.json
+ if len(special_vocab.special_token_ids) == 0:
+ special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
+ special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
+ # this one is usually not in config.json anyway
+ special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def _set_vocab_sentencepiece(self, add_to_gguf=True):
+ tokens, scores, toktypes = self._create_vocab_sentencepiece()
+
+ self.gguf_writer.add_tokenizer_model("llama")
+ self.gguf_writer.add_tokenizer_pre("default")
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_scores(scores)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def _create_vocab_sentencepiece(self):
+ from sentencepiece import SentencePieceProcessor
+
+ tokenizer_path = self.dir_model / 'tokenizer.model'
+
+ if not tokenizer_path.is_file():
+ raise FileNotFoundError(f"File not found: {tokenizer_path}")
+
+ tokenizer = SentencePieceProcessor()
+ tokenizer.LoadFromFile(str(tokenizer_path))
+
+ vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+ tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
+ scores: list[float] = [-10000.0] * vocab_size
+ toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
+
+ for token_id in range(tokenizer.vocab_size()):
+ piece = tokenizer.IdToPiece(token_id)
+ text = piece.encode("utf-8")
+ score = tokenizer.GetScore(token_id)
+
+ toktype = SentencePieceTokenTypes.NORMAL
+ if tokenizer.IsUnknown(token_id):
+ toktype = SentencePieceTokenTypes.UNKNOWN
+ elif tokenizer.IsControl(token_id):
+ toktype = SentencePieceTokenTypes.CONTROL
+ elif tokenizer.IsUnused(token_id):
+ toktype = SentencePieceTokenTypes.UNUSED
+ elif tokenizer.IsByte(token_id):
+ toktype = SentencePieceTokenTypes.BYTE
+
+ tokens[token_id] = text
+ scores[token_id] = score
+ toktypes[token_id] = toktype
+
+ added_tokens_file = self.dir_model / 'added_tokens.json'
+ if added_tokens_file.is_file():
+ with open(added_tokens_file, "r", encoding="utf-8") as f:
+ added_tokens_json = json.load(f)
+ for key in added_tokens_json:
+ token_id = added_tokens_json[key]
+ if token_id >= vocab_size:
+ logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
+ continue
+
+ tokens[token_id] = key.encode("utf-8")
+ scores[token_id] = -1000.0
+ toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+
+ tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
+ if tokenizer_config_file.is_file():
+ with open(tokenizer_config_file, "r", encoding="utf-8") as f:
+ tokenizer_config_json = json.load(f)
+ added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
+ for token_id, token_data in added_tokens_decoder.items():
+ token_id = int(token_id)
+ token: str = token_data["content"]
+ if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
+ if tokens[token_id] != token.encode("utf-8"):
+ logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
+ if token_data.get("special") or self.does_token_look_special(token):
+ toktypes[token_id] = SentencePieceTokenTypes.CONTROL
+ else:
+ token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
+ toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+
+ scores[token_id] = -1000.0
+ tokens[token_id] = token.encode("utf-8")
+
+ if vocab_size > len(tokens):
+ pad_count = vocab_size - len(tokens)
+ logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
+ for i in range(1, pad_count + 1):
+ tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
+ scores.append(-1000.0)
+ toktypes.append(SentencePieceTokenTypes.UNUSED)
+
+ return tokens, scores, toktypes
+
+ def _set_vocab_llama_hf(self):
+ vocab = gguf.LlamaHfVocab(self.dir_model)
+ tokens = []
+ scores = []
+ toktypes = []
+
+ for text, score, toktype in vocab.all_tokens():
+ tokens.append(text)
+ scores.append(score)
+ toktypes.append(toktype)
+
+ assert len(tokens) == vocab.vocab_size
+
+ self.gguf_writer.add_tokenizer_model("llama")
+ self.gguf_writer.add_tokenizer_pre("default")
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_scores(scores)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
+ tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
+ logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
+ vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
+
+ default_pre = "mpt" if model_name == "gpt-neox" else "default"
+
+ field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
+ assert field # tokenizer model
+ self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
+
+ field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
+ self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
+
+ field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
+ assert field # token list
+ self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
+
+ if model_name == "llama-spm":
+ field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
+ assert field # token scores
+ self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
+
+ field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
+ assert field # token types
+ self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
+
+ if model_name != "llama-spm":
+ field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
+ assert field # token merges
+ self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
+
+ if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
+ self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
+ if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
+ self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
+ if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
+ self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
+ if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
+ self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
+ if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
+ self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
+ if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
+ self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
+
+
+@Model.register("GPTNeoXForCausalLM")
+class GPTNeoXModel(Model):
+ model_arch = gguf.MODEL_ARCH.GPTNEOX
+
+ def set_gguf_parameters(self):
+ block_count = self.hparams["num_hidden_layers"]
+
+ self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+ self.gguf_writer.add_rope_dimension_count(
+ int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
+ )
+ self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
+ self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
+ n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
+
+ tensors: list[tuple[str, Tensor]] = []
+
+ if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
+ # Map bloom-style qkv_linear to gpt-style qkv_linear
+ # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
+ # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
+ qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
+ data_torch = torch.cat(
+ (
+ qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
+ qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
+ qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
+ ),
+ dim=0,
+ )
+ logger.info("re-format attention.linear_qkv.weight")
+ elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
+ qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
+ data_torch = torch.cat(
+ (
+ qkv_bias[:, 0, :].reshape((n_embed,)),
+ qkv_bias[:, 1, :].reshape((n_embed,)),
+ qkv_bias[:, 2, :].reshape((n_embed,)),
+ ),
+ dim=0,
+ )
+ logger.info("re-format attention.linear_qkv.bias")
+
+ tensors.append((self.map_tensor_name(name), data_torch))
+
+ return tensors
+
+
+@Model.register("BloomForCausalLM")
+class BloomModel(Model):
+ model_arch = gguf.MODEL_ARCH.BLOOM
+
+ def set_gguf_parameters(self):
+ n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
+ n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
+ self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
+ self.gguf_writer.add_embedding_length(n_embed)
+ self.gguf_writer.add_feed_forward_length(4 * n_embed)
+ self.gguf_writer.add_block_count(self.hparams["n_layer"])
+ self.gguf_writer.add_head_count(n_head)
+ self.gguf_writer.add_head_count_kv(n_head)
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
+ n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
+
+ name = re.sub(r'transformer\.', '', name)
+
+ tensors: list[tuple[str, Tensor]] = []
+
+ if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
+ # Map bloom-style qkv_linear to gpt-style qkv_linear
+ # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
+ # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
+ qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
+ data_torch = torch.cat(
+ (
+ qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
+ qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
+ qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
+ ),
+ dim=0,
+ )
+ logger.info("re-format attention.linear_qkv.weight")
+ elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
+ qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
+ data_torch = torch.cat(
+ (
+ qkv_bias[:, 0, :].reshape((n_embed,)),
+ qkv_bias[:, 1, :].reshape((n_embed,)),
+ qkv_bias[:, 2, :].reshape((n_embed,)),
+ ),
+ dim=0,
+ )
+ logger.info("re-format attention.linear_qkv.bias")
+
+ tensors.append((self.map_tensor_name(name), data_torch))
+
+ if name == "word_embeddings.weight":
+ assert self.tensor_names is not None
+
+ # TODO: tie them at runtime, don't duplicate in the model file
+ if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
+
+ return tensors
+
+
+@Model.register("MPTForCausalLM")
+class MPTModel(Model):
+ model_arch = gguf.MODEL_ARCH.MPT
+
+ def set_vocab(self):
+ try:
+ self._set_vocab_gpt2()
+ except Exception:
+ # Fallback for SEA-LION model
+ self._set_vocab_sentencepiece()
+ self.gguf_writer.add_add_bos_token(False)
+ self.gguf_writer.add_pad_token_id(3)
+ self.gguf_writer.add_eos_token_id(1)
+ self.gguf_writer.add_unk_token_id(0)
+
+ def set_gguf_parameters(self):
+ block_count = self.hparams["n_layers"]
+ self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
+ self.gguf_writer.add_embedding_length(self.hparams["d_model"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
+ self.gguf_writer.add_head_count(self.hparams["n_heads"])
+ if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
+ self.gguf_writer.add_head_count_kv(kv_n_heads)
+ self.gguf_writer.add_layer_norm_eps(1e-5)
+ if self.hparams["attn_config"]["clip_qkv"] is not None:
+ self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
+ if self.hparams["attn_config"]["alibi"]:
+ self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
+ else:
+ self.gguf_writer.add_max_alibi_bias(0.0)
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ if "scales" in name:
+ new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
+ new_name = new_name.replace("scales", "act.scales")
+ else:
+ new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
+
+ return [(new_name, data_torch)]
+
+
+@Model.register("OrionForCausalLM")
+class OrionModel(Model):
+ model_arch = gguf.MODEL_ARCH.ORION
+
+ def set_vocab(self):
+ self._set_vocab_sentencepiece()
+
+ def set_gguf_parameters(self):
+ block_count = self.hparams["num_hidden_layers"]
+ head_count = self.hparams["num_attention_heads"]
+ head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+
+ ctx_length = 0
+ if "max_sequence_length" in self.hparams:
+ ctx_length = self.hparams["max_sequence_length"]
+ elif "max_position_embeddings" in self.hparams:
+ ctx_length = self.hparams["max_position_embeddings"]
+ elif "model_max_length" in self.hparams:
+ ctx_length = self.hparams["model_max_length"]
+ else:
+ raise ValueError("gguf: can not find ctx length parameter.")
+
+ self.gguf_writer.add_file_type(self.ftype)
+ self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
+ self.gguf_writer.add_context_length(ctx_length)
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+ self.gguf_writer.add_head_count(head_count)
+ self.gguf_writer.add_head_count_kv(head_count_kv)
+ # note: config provides rms norm but it is actually layer norm
+ # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
+ self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
+
+
+@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
+class BaichuanModel(Model):
+ model_arch = gguf.MODEL_ARCH.BAICHUAN
+
+ def set_vocab(self):
+ self._set_vocab_sentencepiece()
+
+ def set_gguf_parameters(self):
+ block_count = self.hparams["num_hidden_layers"]
+ head_count = self.hparams["num_attention_heads"]
+ head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+
+ ctx_length = 0
+ if "max_sequence_length" in self.hparams:
+ ctx_length = self.hparams["max_sequence_length"]
+ elif "max_position_embeddings" in self.hparams:
+ ctx_length = self.hparams["max_position_embeddings"]
+ elif "model_max_length" in self.hparams:
+ ctx_length = self.hparams["model_max_length"]
+ else:
+ raise ValueError("gguf: can not find ctx length parameter.")
+
+ self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
+ self.gguf_writer.add_context_length(ctx_length)
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+ self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+ self.gguf_writer.add_head_count(head_count)
+ self.gguf_writer.add_head_count_kv(head_count_kv)
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+ if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+ if self.hparams["rope_scaling"].get("type") == "linear":
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+ self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ head_count = self.hparams["num_attention_heads"]
+ head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+
+ tensors: list[tuple[str, Tensor]] = []
+
+ if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
+ logger.info(f"Unpacking and permuting layer {bid}")
+ tensors = [
+ (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
+ self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
+ (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
+ self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
+ (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
+ self._reverse_hf_part(data_torch, 2)),
+ ]
+ else:
+ tensors = [(self.map_tensor_name(name), data_torch)]
+
+ return tensors
+
+ def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
+ if n_kv_head is not None and n_head != n_kv_head:
+ n_head //= n_kv_head
+
+ return (
+ weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+ .swapaxes(1, 2)
+ .reshape(weights.shape)
+ )
+
+ def _reverse_hf_permute_part(
+ self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
+ ) -> Tensor:
+ r = weights.shape[0] // 3
+ return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
+
+ def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
+ r = weights.shape[0] // 3
+ return weights[r * n_part:r * n_part + r, ...]
+
+
+@Model.register("XverseForCausalLM")
+class XverseModel(Model):
+ model_arch = gguf.MODEL_ARCH.XVERSE
+
+ def set_vocab(self):
+ assert (self.dir_model / "tokenizer.json").is_file()
+ dir_model = self.dir_model
+ hparams = self.hparams
+
+ tokens: list[bytes] = []
+ toktypes: list[int] = []
+
+ from transformers import AutoTokenizer
+ tokenizer = AutoTokenizer.from_pretrained(dir_model)
+ vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
+ # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
+ # because vocab_size is the count of items, and indexes start at 0.
+ max_vocab_index = max(tokenizer.get_vocab().values())
+ if max_vocab_index >= vocab_size:
+ raise ValueError("Vocabulary size exceeds expected maximum size.")
+
+ reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
+ added_vocab = tokenizer.get_added_vocab()
+
+ for token_id in range(vocab_size):
+ token_text = reverse_vocab[token_id].encode('utf-8')
+ # replace "\x00" to string with length > 0
+ if token_text == b"\x00":
+ toktype = gguf.TokenType.BYTE # special
+ token_text = f"<{token_text}>".encode('utf-8')
+ elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
+ toktype = gguf.TokenType.BYTE # special
+ elif reverse_vocab[token_id] in added_vocab:
+ if tokenizer.added_tokens_decoder[token_id].special:
+ toktype = gguf.TokenType.CONTROL
+ else:
+ toktype = gguf.TokenType.USER_DEFINED
+ else:
+ toktype = gguf.TokenType.NORMAL
+
+ tokens.append(token_text)
+ toktypes.append(toktype)
+
+ self.gguf_writer.add_tokenizer_model("llama")
+ self.gguf_writer.add_tokenizer_pre("default")
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def set_gguf_parameters(self):
+ block_count = self.hparams["num_hidden_layers"]
+ head_count = self.hparams["num_attention_heads"]
+ head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+
+ ctx_length = 0
+ if "max_sequence_length" in self.hparams:
+ ctx_length = self.hparams["max_sequence_length"]
+ elif "max_position_embeddings" in self.hparams:
+ ctx_length = self.hparams["max_position_embeddings"]
+ elif "model_max_length" in self.hparams:
+ ctx_length = self.hparams["model_max_length"]
+ else:
+ raise ValueError("gguf: can not find ctx length parameter.")
+
+ self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
+ self.gguf_writer.add_context_length(ctx_length)
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+ self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+ self.gguf_writer.add_head_count(head_count)
+ self.gguf_writer.add_head_count_kv(head_count_kv)
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+ if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+ if self.hparams["rope_scaling"].get("type") == "linear":
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+ self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ head_count = self.hparams["num_attention_heads"]
+ head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+
+ # HF models permute some of the tensors, so we need to undo that
+ if name.endswith("q_proj.weight"):
+ data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
+ if name.endswith("k_proj.weight"):
+ data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+ def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
+ if n_kv_head is not None and n_head != n_kv_head:
+ n_head //= n_kv_head
+
+ return (
+ weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+ .swapaxes(1, 2)
+ .reshape(weights.shape)
+ )
+
+
+@Model.register("FalconForCausalLM", "RWForCausalLM")
+class FalconModel(Model):
+ model_arch = gguf.MODEL_ARCH.FALCON
+
+ def set_gguf_parameters(self):
+ block_count = self.hparams.get("num_hidden_layers")
+ if block_count is None:
+ block_count = self.hparams["n_layer"] # old name
+
+ n_head = self.hparams.get("num_attention_heads")
+ if n_head is None:
+ n_head = self.hparams["n_head"] # old name
+
+ n_head_kv = self.hparams.get("num_kv_heads")
+ if n_head_kv is None:
+ n_head_kv = self.hparams.get("n_head_kv", 1) # old name
+
+ self.gguf_writer.add_context_length(2048) # not in config.json
+ self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+ self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_head_count(n_head)
+ self.gguf_writer.add_head_count_kv(n_head_kv)
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ # QKV tensor transform
+ # The original query_key_value tensor contains n_head_kv "kv groups",
+ # each consisting of n_head/n_head_kv query weights followed by one key
+ # and one value weight (shared by all query heads in the kv group).
+ # This layout makes it a big pain to work with in GGML.
+ # So we rearrange them here,, so that we have n_head query weights
+ # followed by n_head_kv key weights followed by n_head_kv value weights,
+ # in contiguous fashion.
+ # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
+
+ if "query_key_value" in name:
+ n_head = self.find_hparam(["num_attention_heads", "n_head"])
+ n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
+ head_dim = self.hparams["hidden_size"] // n_head
+
+ qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
+ q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
+ k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
+ v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
+ data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("GPTBigCodeForCausalLM")
+class StarCoderModel(Model):
+ model_arch = gguf.MODEL_ARCH.STARCODER
+
+ def set_gguf_parameters(self):
+ block_count = self.hparams["n_layer"]
+
+ self.gguf_writer.add_context_length(self.hparams["n_positions"])
+ self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
+ self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_head_count(self.hparams["n_head"])
+ self.gguf_writer.add_head_count_kv(1)
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+
+@Model.register("GPTRefactForCausalLM")
+class RefactModel(Model):
+ model_arch = gguf.MODEL_ARCH.REFACT
+
+ def set_vocab(self):
+ super().set_vocab()
+
+ # TODO: how to determine special FIM tokens automatically?
+ special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
+ special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
+ special_vocab._set_special_token("prefix", 1)
+ special_vocab._set_special_token("suffix", 3)
+ special_vocab._set_special_token("middle", 2)
+ special_vocab.chat_template = None # do not add it twice
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def set_gguf_parameters(self):
+ hidden_dim = self.hparams["n_embd"]
+ inner_dim = 4 * hidden_dim
+ hidden_dim = int(2 * inner_dim / 3)
+ multiple_of = 256
+ ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
+
+ block_count = self.hparams["n_layer"]
+
+ # refact uses Alibi. So this is from config.json which might be used by training.
+ self.gguf_writer.add_context_length(self.hparams["n_positions"])
+ self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
+
+ self.gguf_writer.add_feed_forward_length(ff_dim)
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_head_count(self.hparams["n_head"])
+ self.gguf_writer.add_head_count_kv(1)
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ hidden_dim = self.hparams["n_embd"]
+ inner_dim = 4 * hidden_dim
+ hidden_dim = int(2 * inner_dim / 3)
+ multiple_of = 256
+ ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
+ n_head = self.hparams["n_head"]
+ n_head_kv = 1
+ head_dim = self.hparams["n_embd"] // n_head
+
+ tensors: list[tuple[str, Tensor]] = []
+
+ if bid is not None:
+ if name == f"transformer.h.{bid}.attn.kv.weight":
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
+ elif name == f"transformer.h.{bid}.attn.q.weight":
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
+ elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
+
+ if len(tensors) == 0:
+ tensors.append((self.map_tensor_name(name), data_torch))
+
+ return tensors
+
+
+@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
+class StableLMModel(Model):
+ model_arch = gguf.MODEL_ARCH.STABLELM
+
+ def set_vocab(self):
+ if (self.dir_model / "tokenizer.json").is_file():
+ self._set_vocab_gpt2()
+ else:
+ # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
+ self._set_vocab_qwen()
+
+ def set_gguf_parameters(self):
+ hparams = self.hparams
+ block_count = hparams["num_hidden_layers"]
+
+ self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
+ self.gguf_writer.add_embedding_length(hparams["hidden_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+ rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
+ self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
+ self.gguf_writer.add_head_count(hparams["num_attention_heads"])
+ self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
+ self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
+ self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
+ self.gguf_writer.add_file_type(self.ftype)
+
+ _q_norms: list[dict[str, Tensor]] | None = None
+ _k_norms: list[dict[str, Tensor]] | None = None
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ n_head = self.hparams["num_attention_heads"]
+ n_kv_head = self.hparams["num_key_value_heads"]
+
+ if name.find("q_layernorm.norms") != -1:
+ assert bid is not None
+
+ if self._q_norms is None:
+ self._q_norms = [{} for _ in range(self.block_count)]
+
+ self._q_norms[bid][name] = data_torch
+
+ if len(self._q_norms[bid]) >= n_head:
+ return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
+ else:
+ return []
+
+ if name.find("k_layernorm.norms") != -1:
+ assert bid is not None
+
+ if self._k_norms is None:
+ self._k_norms = [{} for _ in range(self.block_count)]
+
+ self._k_norms[bid][name] = data_torch
+
+ if len(self._k_norms[bid]) >= n_kv_head:
+ return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
+ else:
+ return []
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+ def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
+ datas: list[Tensor] = []
+ # extract the norms in order
+ for xid in range(n_head):
+ ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
+ datas.append(norms[ename])
+ del norms[ename]
+ data_torch = torch.stack(datas, dim=0)
+
+ merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
+ new_name = self.map_tensor_name(merged_name)
+
+ return [(new_name, data_torch)]
+
+ def prepare_tensors(self):
+ super().prepare_tensors()
+
+ if self._q_norms is not None or self._k_norms is not None:
+ # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
+ norms = (
+ [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
+ ) + (
+ [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
+ )
+ if len(norms) > 0:
+ raise ValueError(f"Unprocessed norms: {norms}")
+
+
+@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
+class LlamaModel(Model):
+ model_arch = gguf.MODEL_ARCH.LLAMA
+
+ def set_vocab(self):
+ try:
+ self._set_vocab_sentencepiece()
+ except FileNotFoundError:
+ try:
+ self._set_vocab_llama_hf()
+ except (FileNotFoundError, TypeError):
+ # Llama 3
+ self._set_vocab_gpt2()
+
+ # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
+ if self.hparams.get("vocab_size", 32000) == 32016:
+ special_vocab = gguf.SpecialVocab(
+ self.dir_model, load_merges=False,
+ special_token_types = ['prefix', 'suffix', 'middle', 'eot']
+ )
+ special_vocab._set_special_token("prefix", 32007)
+ special_vocab._set_special_token("suffix", 32008)
+ special_vocab._set_special_token("middle", 32009)
+ special_vocab._set_special_token("eot", 32010)
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ hparams = self.hparams
+ self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+
+ if "head_dim" in hparams:
+ rope_dim = hparams["head_dim"]
+ else:
+ rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
+ self.gguf_writer.add_rope_dimension_count(rope_dim)
+
+ if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+ if self.hparams["rope_scaling"].get("type") == "linear":
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+ self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+ tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
+ if tokenizer_config_file.is_file():
+ with open(tokenizer_config_file, "r", encoding="utf-8") as f:
+ tokenizer_config_json = json.load(f)
+ if "add_prefix_space" in tokenizer_config_json:
+ self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
+
+ # Apply to granite small models only
+ if self.hparams.get("vocab_size", 32000) == 49152:
+ self.gguf_writer.add_add_bos_token(False)
+
+ @staticmethod
+ def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
+ if n_head_kv is not None and n_head != n_head_kv:
+ n_head = n_head_kv
+ return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+ .swapaxes(1, 2)
+ .reshape(weights.shape))
+
+ _experts: list[dict[str, Tensor]] | None = None
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ n_head = self.hparams["num_attention_heads"]
+ n_kv_head = self.hparams.get("num_key_value_heads")
+
+ if name.endswith(("q_proj.weight", "q_proj.bias")):
+ data_torch = LlamaModel.permute(data_torch, n_head, n_head)
+ if name.endswith(("k_proj.weight", "k_proj.bias")):
+ data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
+
+ # process the experts separately
+ if name.find("block_sparse_moe.experts") != -1:
+ n_experts = self.hparams["num_local_experts"]
+
+ assert bid is not None
+
+ if self._experts is None:
+ self._experts = [{} for _ in range(self.block_count)]
+
+ self._experts[bid][name] = data_torch
+
+ if len(self._experts[bid]) >= n_experts * 3:
+ tensors: list[tuple[str, Tensor]] = []
+
+ # merge the experts into a single 3d tensor
+ for wid in ["w1", "w2", "w3"]:
+ datas: list[Tensor] = []
+
+ for xid in range(n_experts):
+ ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
+ datas.append(self._experts[bid][ename])
+ del self._experts[bid][ename]
+
+ data_torch = torch.stack(datas, dim=0)
+
+ merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
+
+ new_name = self.map_tensor_name(merged_name)
+
+ tensors.append((new_name, data_torch))
+ return tensors
+ else:
+ return []
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+ def prepare_tensors(self):
+ super().prepare_tensors()
+
+ if self._experts is not None:
+ # flatten `list[dict[str, Tensor]]` into `list[str]`
+ experts = [k for d in self._experts for k in d.keys()]
+ if len(experts) > 0:
+ raise ValueError(f"Unprocessed experts: {experts}")
+
+
+@Model.register("BitnetForCausalLM")
+class BitnetModel(Model):
+ model_arch = gguf.MODEL_ARCH.BITNET
+
+ def set_vocab(self):
+ self._set_vocab_sentencepiece()
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+ self.gguf_writer.add_rope_scaling_factor(1.0)
+
+ def weight_quant(self, weight):
+ dtype = weight.dtype
+ weight = weight.float()
+ s = 1 / weight.abs().mean().clamp(min=1e-5)
+ weight = (weight * s).round().clamp(-1, 1) / s
+ scale = weight.abs().max().unsqueeze(0)
+ weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
+ weight = torch.sign(weight).type(dtype)
+ return weight.type(dtype), scale.type(torch.float32)
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ # transform weight into 1/0/-1 (in fp32)
+ if name.endswith(("q_proj.weight", "k_proj.weight", "v_proj.weight",
+ "down_proj.weight", "up_proj.weight", "gate_proj.weight",
+ "o_proj.weight")):
+ weight_torch, scale_torch = self.weight_quant(data_torch)
+
+ tensors: list[tuple[str, Tensor]] = []
+
+ if name.endswith("q_proj.weight"):
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), weight_torch))
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid, suffix=".scale"), scale_torch))
+ elif name.endswith("k_proj.weight"):
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), weight_torch))
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid, suffix=".scale"), scale_torch))
+ elif name.endswith("v_proj.weight"):
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), weight_torch))
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid, suffix=".scale"), scale_torch))
+ elif name.endswith("o_proj.weight"):
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), weight_torch))
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid, suffix=".scale"), scale_torch))
+ elif name.endswith("up_proj.weight"):
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), weight_torch))
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid, suffix=".scale"), scale_torch))
+ elif name.endswith("down_proj.weight"):
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), weight_torch))
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid, suffix=".scale"), scale_torch))
+ elif name.endswith("gate_proj.weight"):
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), weight_torch))
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid, suffix=".scale"), scale_torch))
+
+ if len(tensors) == 0:
+ tensors.append((self.map_tensor_name(name), data_torch))
+
+ return tensors
+
+
+@Model.register("GrokForCausalLM")
+class GrokModel(Model):
+ model_arch = gguf.MODEL_ARCH.GROK
+
+ def set_vocab(self):
+ self._set_vocab_sentencepiece()
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+
+ _experts: list[dict[str, Tensor]] | None = None
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ # process the experts separately
+ if name.find(".moe.") != -1:
+ n_experts = self.hparams["num_local_experts"]
+
+ assert bid is not None
+
+ if self._experts is None:
+ self._experts = [{} for _ in range(self.block_count)]
+
+ self._experts[bid][name] = data_torch
+
+ if len(self._experts[bid]) >= n_experts * 3:
+ tensors: list[tuple[str, Tensor]] = []
+
+ # merge the experts into a single 3d tensor
+ for wid in ["linear", "linear_1", "linear_v"]:
+ datas: list[Tensor] = []
+
+ for xid in range(n_experts):
+ ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
+ datas.append(self._experts[bid][ename])
+ del self._experts[bid][ename]
+
+ data_torch = torch.stack(datas, dim=0)
+
+ merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
+
+ new_name = self.map_tensor_name(merged_name)
+
+ tensors.append((new_name, data_torch))
+ return tensors
+ else:
+ return []
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("DbrxForCausalLM")
+class DbrxModel(Model):
+ model_arch = gguf.MODEL_ARCH.DBRX
+
+ def set_gguf_parameters(self):
+ ffn_config = self.hparams["ffn_config"]
+ attn_config = self.hparams["attn_config"]
+ self.gguf_writer.add_block_count(self.hparams["n_layers"])
+
+ self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
+ self.gguf_writer.add_embedding_length(self.hparams["d_model"])
+ self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
+
+ self.gguf_writer.add_head_count(self.hparams["n_heads"])
+ self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
+
+ self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
+
+ self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
+
+ self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
+ self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
+
+ self.gguf_writer.add_layer_norm_eps(1e-5)
+
+ self.gguf_writer.add_file_type(self.ftype)
+ logger.info(f"gguf: file type = {self.ftype}")
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ n_expert = self.hparams["ffn_config"]["moe_num_experts"]
+ n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
+ n_embd = self.hparams["d_model"]
+
+ # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
+ # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
+ # But llama.cpp moe graph works differently
+ # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
+ # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
+ exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
+ "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
+ "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
+ experts = False
+
+ for exp_tensor_name in exp_tensor_names.keys():
+ if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
+ experts = True
+ data_torch = data_torch.view(n_expert, n_ff, n_embd)
+ if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
+ data_torch = data_torch.permute(*permute_tensor)
+ break
+
+ # map tensor names
+ # In MoE models the ffn tensors are typically most of the model weights,
+ # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
+ # Every other model has the weight names ending in .weight,
+ # let's assume that is the convention which is not the case for dbrx:
+ # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
+ new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
+
+ return [(new_name, data_torch)]
+
+ def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
+ del name, new_name, bid # unused
+
+ return n_dims > 1
+
+
+@Model.register("MiniCPMForCausalLM")
+class MiniCPMModel(Model):
+ model_arch = gguf.MODEL_ARCH.MINICPM
+
+ def set_gguf_parameters(self):
+ block_count = self.hparams["num_hidden_layers"]
+ self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+ self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+ self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
+ self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+ def set_vocab(self):
+ self._set_vocab_llama_hf()
+
+ def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
+ if n_kv_head is not None and n_head != n_kv_head:
+ n_head //= n_kv_head
+
+ return (
+ weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+ .swapaxes(1, 2)
+ .reshape(weights.shape)
+ )
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ n_head = self.hparams["num_attention_heads"]
+ n_kv_head = self.hparams.get("num_key_value_heads")
+
+ # HF models permute some of the tensors, so we need to undo that
+ if name.endswith(("q_proj.weight")):
+ data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
+ if name.endswith(("k_proj.weight")):
+ data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("QWenLMHeadModel")
+class QwenModel(Model):
+ model_arch = gguf.MODEL_ARCH.QWEN
+
+ @staticmethod
+ def token_bytes_to_string(b):
+ from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
+ byte_encoder = bytes_to_unicode()
+ return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
+
+ @staticmethod
+ def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
+ parts = [bytes([b]) for b in token]
+ while True:
+ min_idx = None
+ min_rank = None
+ for i, pair in enumerate(zip(parts[:-1], parts[1:])):
+ rank = mergeable_ranks.get(pair[0] + pair[1])
+ if rank is not None and (min_rank is None or rank < min_rank):
+ min_idx = i
+ min_rank = rank
+ if min_rank is None or (max_rank is not None and min_rank >= max_rank):
+ break
+ assert min_idx is not None
+ parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
+ return parts
+
+ def set_vocab(self):
+ self._set_vocab_qwen()
+
+ def set_gguf_parameters(self):
+ self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
+ self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+ self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
+ self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+ self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+
+@Model.register("Qwen2ForCausalLM")
+class Qwen2Model(Model):
+ model_arch = gguf.MODEL_ARCH.QWEN2
+
+ def set_vocab(self):
+ try:
+ self._set_vocab_sentencepiece()
+ except FileNotFoundError:
+ self._set_vocab_gpt2()
+
+
+@Model.register("Qwen2MoeForCausalLM")
+class Qwen2MoeModel(Model):
+ model_arch = gguf.MODEL_ARCH.QWEN2MOE
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ if (n_experts := self.hparams.get("num_experts")) is not None:
+ self.gguf_writer.add_expert_count(n_experts)
+ if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
+ self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
+ logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
+ if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
+ self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
+ logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
+
+ _experts: list[dict[str, Tensor]] | None = None
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ # process the experts separately
+ if name.find("experts") != -1:
+ n_experts = self.hparams["num_experts"]
+ assert bid is not None
+
+ if self._experts is None:
+ self._experts = [{} for _ in range(self.block_count)]
+
+ self._experts[bid][name] = data_torch
+
+ if len(self._experts[bid]) >= n_experts * 3:
+ tensors: list[tuple[str, Tensor]] = []
+
+ # merge the experts into a single 3d tensor
+ for w_name in ["down_proj", "gate_proj", "up_proj"]:
+ datas: list[Tensor] = []
+
+ for xid in range(n_experts):
+ ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+ datas.append(self._experts[bid][ename])
+ del self._experts[bid][ename]
+
+ data_torch = torch.stack(datas, dim=0)
+
+ merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+
+ new_name = self.map_tensor_name(merged_name)
+
+ tensors.append((new_name, data_torch))
+ return tensors
+ else:
+ return []
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+ def prepare_tensors(self):
+ super().prepare_tensors()
+
+ if self._experts is not None:
+ # flatten `list[dict[str, Tensor]]` into `list[str]`
+ experts = [k for d in self._experts for k in d.keys()]
+ if len(experts) > 0:
+ raise ValueError(f"Unprocessed experts: {experts}")
+
+
+@Model.register("GPT2LMHeadModel")
+class GPT2Model(Model):
+ model_arch = gguf.MODEL_ARCH.GPT2
+
+ def set_gguf_parameters(self):
+ self.gguf_writer.add_block_count(self.hparams["n_layer"])
+ self.gguf_writer.add_context_length(self.hparams["n_ctx"])
+ self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
+ self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
+ self.gguf_writer.add_head_count(self.hparams["n_head"])
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ tensors: list[tuple[str, Tensor]] = []
+
+ # we don't need these
+ if name.endswith((".attn.bias", ".attn.masked_bias")):
+ return tensors
+
+ if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
+ data_torch = data_torch.transpose(1, 0)
+
+ new_name = self.map_tensor_name(name)
+
+ tensors.append((new_name, data_torch))
+
+ # note: GPT2 output is tied to (same as) wte in original model
+ if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
+
+ return tensors
+
+
+@Model.register("PhiForCausalLM")
+class Phi2Model(Model):
+ model_arch = gguf.MODEL_ARCH.PHI2
+
+ def set_gguf_parameters(self):
+ block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
+
+ rot_pct = self.find_hparam(["partial_rotary_factor"])
+ n_embd = self.find_hparam(["hidden_size", "n_embd"])
+ n_head = self.find_hparam(["num_attention_heads", "n_head"])
+
+ self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
+
+ self.gguf_writer.add_embedding_length(n_embd)
+ self.gguf_writer.add_feed_forward_length(4 * n_embd)
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_head_count(n_head)
+ self.gguf_writer.add_head_count_kv(n_head)
+ self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
+ self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
+ self.gguf_writer.add_file_type(self.ftype)
+ self.gguf_writer.add_add_bos_token(False)
+
+
+@Model.register("Phi3ForCausalLM")
+class Phi3MiniModel(Model):
+ model_arch = gguf.MODEL_ARCH.PHI3
+
+ def set_vocab(self):
+ from sentencepiece import SentencePieceProcessor
+
+ tokenizer_path = self.dir_model / 'tokenizer.model'
+
+ if not tokenizer_path.is_file():
+ raise ValueError(f'Error: Missing {tokenizer_path}')
+
+ tokenizer = SentencePieceProcessor()
+ tokenizer.LoadFromFile(str(tokenizer_path))
+
+ vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+ tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
+ scores: list[float] = [-10000.0] * vocab_size
+ toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
+
+ for token_id in range(tokenizer.vocab_size()):
+
+ piece = tokenizer.IdToPiece(token_id)
+ text = piece.encode("utf-8")
+ score = tokenizer.GetScore(token_id)
+
+ toktype = SentencePieceTokenTypes.NORMAL
+ if tokenizer.IsUnknown(token_id):
+ toktype = SentencePieceTokenTypes.UNKNOWN
+ elif tokenizer.IsControl(token_id):
+ toktype = SentencePieceTokenTypes.CONTROL
+ elif tokenizer.IsUnused(token_id):
+ toktype = SentencePieceTokenTypes.UNUSED
+ elif tokenizer.IsByte(token_id):
+ toktype = SentencePieceTokenTypes.BYTE
+
+ tokens[token_id] = text
+ scores[token_id] = score
+ toktypes[token_id] = toktype
+
+ added_tokens_file = self.dir_model / 'added_tokens.json'
+ if added_tokens_file.is_file():
+ with open(added_tokens_file, "r", encoding="utf-8") as f:
+ added_tokens_json = json.load(f)
+
+ for key in added_tokens_json:
+ token_id = added_tokens_json[key]
+ if token_id >= vocab_size:
+ logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
+ continue
+
+ tokens[token_id] = key.encode("utf-8")
+ scores[token_id] = -1000.0
+ toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+
+ tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
+ if tokenizer_config_file.is_file():
+ with open(tokenizer_config_file, "r", encoding="utf-8") as f:
+ tokenizer_config_json = json.load(f)
+ added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
+ for token_id, foken_data in added_tokens_decoder.items():
+ token_id = int(token_id)
+ token = foken_data["content"].encode("utf-8")
+ if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
+ if tokens[token_id] != token:
+ logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
+ tokens[token_id] = token
+ scores[token_id] = -1000.0
+ toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+ if foken_data.get("special"):
+ toktypes[token_id] = SentencePieceTokenTypes.CONTROL
+
+ tokenizer_file = self.dir_model / 'tokenizer.json'
+ if tokenizer_file.is_file():
+ with open(tokenizer_file, "r", encoding="utf-8") as f:
+ tokenizer_json = json.load(f)
+ added_tokens = tokenizer_json.get("added_tokens", [])
+ for foken_data in added_tokens:
+ token_id = int(foken_data["id"])
+ token = foken_data["content"].encode("utf-8")
+ if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
+ if tokens[token_id] != token:
+ logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
+ tokens[token_id] = token
+ scores[token_id] = -1000.0
+ toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+ if foken_data.get("special"):
+ toktypes[token_id] = SentencePieceTokenTypes.CONTROL
+
+ self.gguf_writer.add_tokenizer_model("llama")
+ self.gguf_writer.add_tokenizer_pre("default")
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_scores(scores)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def set_gguf_parameters(self):
+ block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
+
+ n_embd = self.find_hparam(["hidden_size", "n_embd"])
+ n_head = self.find_hparam(["num_attention_heads", "n_head"])
+ n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
+ rms_eps = self.find_hparam(["rms_norm_eps"])
+ max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
+ orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
+ rope_dims = n_embd // n_head
+
+ self.gguf_writer.add_context_length(max_pos_embds)
+ self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
+ self.gguf_writer.add_embedding_length(n_embd)
+ self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_head_count(n_head)
+ self.gguf_writer.add_head_count_kv(n_head_kv)
+ self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
+ self.gguf_writer.add_rope_dimension_count(rope_dims)
+ self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
+ self.gguf_writer.add_file_type(self.ftype)
+ self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
+
+ # write rope scaling for long context (128k) model
+ rope_scaling = self.find_hparam(['rope_scaling'], True)
+ if rope_scaling is None:
+ return
+
+ scale = max_pos_embds / orig_max_pos_embds
+
+ rope_scaling_type = rope_scaling.get('type', '').lower()
+ if len(rope_scaling_type) == 0:
+ raise KeyError('Missing the required key rope_scaling.type')
+
+ if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
+ attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
+ elif rope_scaling_type == 'yarn':
+ attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
+ else:
+ raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
+
+ self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
+
+ long_factors = rope_scaling.get('long_factor', None)
+ short_factors = rope_scaling.get('short_factor', None)
+
+ if long_factors is None or short_factors is None:
+ raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
+
+ if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
+ raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
+
+ self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
+ self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
+
+
+@Model.register("PlamoForCausalLM")
+class PlamoModel(Model):
+ model_arch = gguf.MODEL_ARCH.PLAMO
+
+ def set_vocab(self):
+ self._set_vocab_sentencepiece()
+
+ def set_gguf_parameters(self):
+ hparams = self.hparams
+ block_count = hparams["num_hidden_layers"]
+
+ self.gguf_writer.add_context_length(4096) # not in config.json
+ self.gguf_writer.add_embedding_length(hparams["hidden_size"])
+ self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_head_count(hparams["num_attention_heads"])
+ self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
+ self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+ def shuffle_attn_q_weight(self, data_torch):
+ assert data_torch.size() == (5120, 5120)
+ data_torch = data_torch.reshape(8, 5, 128, 5120)
+ data_torch = torch.permute(data_torch, (1, 0, 2, 3))
+ data_torch = torch.reshape(data_torch, (5120, 5120))
+ return data_torch
+
+ def shuffle_attn_output_weight(self, data_torch):
+ assert data_torch.size() == (5120, 5120)
+ data_torch = data_torch.reshape(5120, 8, 5, 128)
+ data_torch = torch.permute(data_torch, (0, 2, 1, 3))
+ data_torch = torch.reshape(data_torch, (5120, 5120))
+ return data_torch
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ new_name = self.map_tensor_name(name)
+
+ # shuffle for broadcasting of gqa in ggml_mul_mat
+ if new_name.endswith("attn_q.weight"):
+ data_torch = self.shuffle_attn_q_weight(data_torch)
+ elif new_name.endswith("attn_output.weight"):
+ data_torch = self.shuffle_attn_output_weight(data_torch)
+
+ return [(new_name, data_torch)]
+
+
+@Model.register("CodeShellForCausalLM")
+class CodeShellModel(Model):
+ model_arch = gguf.MODEL_ARCH.CODESHELL
+
+ def set_gguf_parameters(self):
+ block_count = self.hparams["n_layer"]
+
+ self.gguf_writer.add_context_length(self.hparams["n_positions"])
+ self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
+ self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_head_count(self.hparams["n_head"])
+ self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_file_type(self.ftype)
+ self.gguf_writer.add_rope_freq_base(10000.0)
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+ self.gguf_writer.add_rope_scaling_factor(1.0)
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ new_name = self.map_tensor_name(name)
+
+ tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
+
+ if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
+ assert self.tensor_names is not None
+
+ if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
+ # copy tok_embd.weight to output.weight
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
+
+ return tensors
+
+
+@Model.register("InternLM2ForCausalLM")
+class InternLM2Model(Model):
+ model_arch = gguf.MODEL_ARCH.INTERNLM2
+
+ def set_vocab(self):
+ # (TODO): Is there a better way?
+ # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
+ # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
+ # recognized as an empty string in C++.
+ from sentencepiece import SentencePieceProcessor
+ from sentencepiece import sentencepiece_model_pb2 as model
+
+ tokenizer_path = self.dir_model / 'tokenizer.model'
+
+ tokens: list[bytes] = []
+ scores: list[float] = []
+ toktypes: list[int] = []
+
+ if not tokenizer_path.is_file():
+ logger.error(f'Error: Missing {tokenizer_path}')
+ sys.exit(1)
+
+ sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
+ sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
+ add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
+
+ tokenizer = SentencePieceProcessor()
+ tokenizer.LoadFromFile(str(tokenizer_path))
+
+ vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+ for token_id in range(vocab_size):
+ piece = tokenizer.IdToPiece(token_id)
+ text = piece.encode("utf-8")
+ score = tokenizer.GetScore(token_id)
+ if text == b"\x00":
+ # (TODO): fixme
+ # Hack here and replace the \x00 characters.
+ logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
+ text = "🐉".encode("utf-8")
+
+ toktype = SentencePieceTokenTypes.NORMAL
+ if tokenizer.IsUnknown(token_id):
+ toktype = SentencePieceTokenTypes.UNKNOWN
+ elif tokenizer.IsControl(token_id):
+ toktype = SentencePieceTokenTypes.CONTROL
+ elif tokenizer.IsUnused(token_id):
+ toktype = SentencePieceTokenTypes.UNUSED
+ elif tokenizer.IsByte(token_id):
+ toktype = SentencePieceTokenTypes.BYTE
+ # take care of ununsed raw token
+ if piece.startswith('[UNUSED'):
+ toktype = SentencePieceTokenTypes.UNUSED
+
+ tokens.append(text)
+ scores.append(score)
+ toktypes.append(toktype)
+
+ added_tokens_file = self.dir_model / 'added_tokens.json'
+ if added_tokens_file.is_file():
+ with open(added_tokens_file, "r", encoding="utf-8") as f:
+ added_tokens_json = json.load(f)
+
+ for key in added_tokens_json:
+ tokens.append(key.encode("utf-8"))
+ scores.append(-1000.0)
+ toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
+
+ chat_eos_token = '<|im_end|>'
+ chat_eos_token_id = None
+
+ tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
+ if tokenizer_config_file.is_file():
+ with open(tokenizer_config_file, "r", encoding="utf-8") as f:
+ tokenizer_config_json = json.load(f)
+ added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
+ for token_id, foken_data in added_tokens_decoder.items():
+ token_id = int(token_id)
+ token = foken_data["content"]
+ if token == chat_eos_token:
+ chat_eos_token_id = token_id
+ token = token.encode("utf-8")
+ if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
+ if tokens[token_id] != token:
+ logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
+ tokens[token_id] = token
+ scores[token_id] = -1000.0
+ toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+ if foken_data.get("special"):
+ toktypes[token_id] = SentencePieceTokenTypes.CONTROL
+
+ tokenizer_file = self.dir_model / 'tokenizer.json'
+ if tokenizer_file.is_file():
+ with open(tokenizer_file, "r", encoding="utf-8") as f:
+ tokenizer_json = json.load(f)
+ added_tokens = tokenizer_json.get("added_tokens", [])
+ for foken_data in added_tokens:
+ token_id = int(foken_data["id"])
+ token = foken_data["content"]
+ if token == chat_eos_token:
+ chat_eos_token_id = token_id
+ token = token.encode("utf-8")
+ if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
+ if tokens[token_id] != token:
+ logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
+ tokens[token_id] = token
+ scores[token_id] = -1000.0
+ toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+ if foken_data.get("special"):
+ toktypes[token_id] = SentencePieceTokenTypes.CONTROL
+
+ self.gguf_writer.add_tokenizer_model("llama")
+ self.gguf_writer.add_tokenizer_pre("default")
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_scores(scores)
+ self.gguf_writer.add_token_types(toktypes)
+ self.gguf_writer.add_add_space_prefix(add_prefix)
+
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+ old_eos = special_vocab.special_token_ids["eos"]
+ if chat_eos_token_id is not None:
+ # For the chat model, we replace the eos with '<|im_end|>'.
+ # TODO: this is a hack, should be fixed
+ # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
+ special_vocab.special_token_ids["eos"] = chat_eos_token_id
+ logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
+ " in chat mode so that the conversation can end normally.")
+
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def set_gguf_parameters(self):
+ self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
+ self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+ self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
+ self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+ self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
+ self.gguf_writer.add_file_type(self.ftype)
+ if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+ if self.hparams["rope_scaling"].get("type") == "linear":
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+ self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ num_heads = self.hparams["num_attention_heads"]
+ num_kv_heads = self.hparams["num_key_value_heads"]
+ n_embd = self.hparams["hidden_size"]
+ q_per_kv = num_heads // num_kv_heads
+ head_dim = n_embd // num_heads
+ num_groups = num_heads // q_per_kv
+
+ if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
+ qkv = data_torch
+
+ qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
+ q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
+
+ # The model weights of q and k equire additional reshape.
+ q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
+ k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
+ v = v.reshape((-1, v.shape[-1]))
+
+ return [
+ (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
+ (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
+ (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
+ ]
+ else:
+ return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("BertModel", "CamembertModel")
+class BertModel(Model):
+ model_arch = gguf.MODEL_ARCH.BERT
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.vocab_size = None
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ self.gguf_writer.add_causal_attention(False)
+
+ # get pooling path
+ pooling_path = None
+ module_path = self.dir_model / "modules.json"
+ if module_path.is_file():
+ with open(module_path, encoding="utf-8") as f:
+ modules = json.load(f)
+ for mod in modules:
+ if mod["type"] == "sentence_transformers.models.Pooling":
+ pooling_path = mod["path"]
+ break
+
+ # get pooling type
+ if pooling_path is not None:
+ with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
+ pooling = json.load(f)
+ if pooling["pooling_mode_mean_tokens"]:
+ pooling_type = gguf.PoolingType.MEAN
+ elif pooling["pooling_mode_cls_token"]:
+ pooling_type = gguf.PoolingType.CLS
+ else:
+ raise NotImplementedError("Only MEAN and CLS pooling types supported")
+ self.gguf_writer.add_pooling_type(pooling_type)
+
+ def set_vocab(self):
+ tokens, toktypes, tokpre = self.get_vocab_base()
+ self.vocab_size = len(tokens)
+
+ # we need this to validate the size of the token_type embeddings
+ # though currently we are passing all zeros to the token_type embeddings
+ self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
+
+ # convert to phantom space vocab
+ def phantom(tok):
+ if tok.startswith("[") and tok.endswith("]"):
+ return tok
+ if tok.startswith("##"):
+ return tok[2:]
+ return "\u2581" + tok
+ tokens = list(map(phantom, tokens))
+
+ # add vocab to gguf
+ self.gguf_writer.add_tokenizer_model("bert")
+ self.gguf_writer.add_tokenizer_pre(tokpre)
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_types(toktypes)
+
+ # handle special tokens
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ # we are only using BERT for embeddings so we don't need the pooling layer
+ if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
+ return [] # we don't need these
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("NomicBertModel")
+class NomicBertModel(BertModel):
+ model_arch = gguf.MODEL_ARCH.NOMIC_BERT
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ # the HF config claims n_ctx=8192, but it uses RoPE scaling
+ self.hparams["n_ctx"] = 2048
+
+ # SwigLU activation
+ assert self.hparams["activation_function"] == "swiglu"
+ # this doesn't do anything in the HF version
+ assert self.hparams["causal"] is False
+ # no bias tensors
+ assert self.hparams["qkv_proj_bias"] is False
+ assert self.hparams["mlp_fc1_bias"] is False
+ assert self.hparams["mlp_fc2_bias"] is False
+ # norm at end of layer
+ assert self.hparams["prenorm"] is False
+ # standard RoPE
+ assert self.hparams["rotary_emb_fraction"] == 1.0
+ assert self.hparams["rotary_emb_interleaved"] is False
+ assert self.hparams["rotary_emb_scale_base"] is None
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
+
+
+@Model.register("GemmaForCausalLM")
+class GemmaModel(Model):
+ model_arch = gguf.MODEL_ARCH.GEMMA
+
+ def set_vocab(self):
+ self._set_vocab_sentencepiece()
+
+ # TODO: these special tokens should be exported only for the CodeGemma family
+ special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
+ special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
+ special_vocab._set_special_token("prefix", 67)
+ special_vocab._set_special_token("suffix", 69)
+ special_vocab._set_special_token("middle", 68)
+ special_vocab._set_special_token("fsep", 70)
+ special_vocab._set_special_token("eot", 107)
+ special_vocab.chat_template = None # do not add it twice
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ self.gguf_writer.add_add_space_prefix(False)
+
+ def set_gguf_parameters(self):
+ hparams = self.hparams
+ block_count = hparams["num_hidden_layers"]
+
+ self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
+ self.gguf_writer.add_embedding_length(hparams["hidden_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+ self.gguf_writer.add_head_count(hparams["num_attention_heads"])
+ self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+ self.gguf_writer.add_key_length(hparams["head_dim"])
+ self.gguf_writer.add_value_length(hparams["head_dim"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
+ # To prevent errors, skip loading lm_head.weight.
+ if name == "lm_head.weight":
+ logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
+ return []
+
+ # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
+ if name.endswith("norm.weight"):
+ data_torch = data_torch + 1
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("Gemma2ForCausalLM")
+class Gemma2Model(Model):
+ model_arch = gguf.MODEL_ARCH.GEMMA2
+
+ def set_vocab(self):
+ self._set_vocab_sentencepiece()
+
+ self.gguf_writer.add_add_space_prefix(False)
+
+ def set_gguf_parameters(self):
+ hparams = self.hparams
+ block_count = hparams["num_hidden_layers"]
+
+ self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
+ self.gguf_writer.add_embedding_length(hparams["hidden_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+ self.gguf_writer.add_head_count(hparams["num_attention_heads"])
+ self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+ self.gguf_writer.add_key_length(hparams["head_dim"])
+ self.gguf_writer.add_value_length(hparams["head_dim"])
+ self.gguf_writer.add_file_type(self.ftype)
+ self.gguf_writer.add_attn_logit_softcapping(
+ self.hparams["attn_logit_softcapping"]
+ )
+ self.gguf_writer.add_final_logit_softcapping(
+ self.hparams["final_logit_softcapping"]
+ )
+ self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
+ # To prevent errors, skip loading lm_head.weight.
+ if name == "lm_head.weight":
+ logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
+ return []
+
+ # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
+ if name.endswith("norm.weight"):
+ data_torch = data_torch + 1
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("Starcoder2ForCausalLM")
+class StarCoder2Model(Model):
+ model_arch = gguf.MODEL_ARCH.STARCODER2
+
+
+@Model.register("MambaForCausalLM", "MambaLMHeadModel")
+class MambaModel(Model):
+ model_arch = gguf.MODEL_ARCH.MAMBA
+
+ def set_vocab(self):
+ vocab_size = self.hparams["vocab_size"]
+ # Round vocab size to next multiple of 8
+ pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
+ # pad using ceiling division
+ # ref: https://stackoverflow.com/a/17511341/22827863
+ vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
+ self.hparams["vocab_size"] = vocab_size
+
+ if (self.dir_model / "tokenizer.json").is_file():
+ self._set_vocab_gpt2()
+ elif (self.dir_model / "tokenizer.model").is_file():
+ self._set_vocab_sentencepiece()
+ else:
+ # Use the GPT-NeoX tokenizer when no tokenizer files are present
+ self._set_vocab_builtin("gpt-neox", vocab_size)
+
+ def set_gguf_parameters(self):
+ d_model = self.find_hparam(["hidden_size", "d_model"])
+ d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
+ d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
+ d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
+ # ceiling division
+ # ref: https://stackoverflow.com/a/17511341/22827863
+ # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
+ dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
+ rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
+
+ # Fail early for models which don't have a block expansion factor of 2
+ assert d_inner == 2 * d_model
+
+ self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
+ self.gguf_writer.add_embedding_length(d_model)
+ self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
+ self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
+ self.gguf_writer.add_block_count(self.hparams["n_layer"])
+ self.gguf_writer.add_ssm_conv_kernel(d_conv)
+ self.gguf_writer.add_ssm_inner_size(d_inner)
+ self.gguf_writer.add_ssm_state_size(d_state)
+ self.gguf_writer.add_ssm_time_step_rank(dt_rank)
+ self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
+ self.gguf_writer.add_file_type(self.ftype)
+
+ _tok_embd = None
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
+ tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
+
+ new_name = self.map_tensor_name(name)
+
+ if name.endswith(".A_log"):
+ logger.debug("A_log --> A ==> " + new_name)
+ data_torch = -torch.exp(data_torch)
+
+ # assuming token_embd.weight is seen before output.weight
+ if self._tok_embd is not None and new_name == output_name:
+ if torch.equal(self._tok_embd, data_torch):
+ logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
+ return []
+ elif new_name == tok_embd_name:
+ self._tok_embd = data_torch
+
+ return [(new_name, data_torch)]
+
+ def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
+ del n_dims # unused
+
+ return bid is not None and new_name in (
+ self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
+ gguf.MODEL_TENSOR.SSM_CONV1D,
+ gguf.MODEL_TENSOR.SSM_X,
+ gguf.MODEL_TENSOR.SSM_DT,
+ gguf.MODEL_TENSOR.SSM_A,
+ gguf.MODEL_TENSOR.SSM_D,
+ ]
+ )
+
+
+@Model.register("CohereForCausalLM")
+class CommandR2Model(Model):
+ model_arch = gguf.MODEL_ARCH.COMMAND_R
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ # max_position_embeddings = 8192 in config.json but model was actually
+ # trained on 128k context length
+ # aya-23 models don't have model_max_length specified
+ self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
+
+
+@Model.register("OlmoForCausalLM")
+@Model.register("OLMoForCausalLM")
+class OlmoModel(Model):
+ model_arch = gguf.MODEL_ARCH.OLMO
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ self.gguf_writer.add_layer_norm_eps(1e-5)
+ clip_qkv = self.hparams.get("clip_qkv")
+ if clip_qkv is not None:
+ self.gguf_writer.add_clamp_kqv(clip_qkv)
+
+ # Same as super class, but permuting q_proj, k_proj
+ # Copied from: LlamaModel
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ n_head = self.hparams["num_attention_heads"]
+ n_kv_head = self.hparams.get("num_key_value_heads")
+
+ if name.endswith("q_proj.weight"):
+ data_torch = LlamaModel.permute(data_torch, n_head, n_head)
+ if name.endswith("k_proj.weight"):
+ data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("JinaBertModel", "JinaBertForMaskedLM")
+class JinaBertV2Model(BertModel):
+ model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.intermediate_size = self.hparams["intermediate_size"]
+
+ def get_tensors(self):
+ for name, data in super().get_tensors():
+ if 'gated_layer' in name:
+ d1 = data[:self.intermediate_size, :]
+ name1 = name.replace('gated_layers', 'gated_layers_w')
+ name1 = name1.replace('up_gated_layer', 'gated_layers_v')
+ d2 = data[self.intermediate_size:, :]
+ name2 = name.replace('gated_layers', 'gated_layers_v')
+ name2 = name2.replace('up_gated_layer', 'gated_layers_w')
+ yield name1, d1
+ yield name2, d2
+ continue
+
+ yield name, data
+
+ def set_vocab(self):
+ tokenizer_class = 'BertTokenizer'
+ with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
+ tokenizer_class = json.load(f)['tokenizer_class']
+
+ if tokenizer_class == 'BertTokenizer':
+ super().set_vocab()
+ elif tokenizer_class == 'RobertaTokenizer':
+ self._set_vocab_gpt2()
+ self.gguf_writer.add_token_type_count(2)
+ else:
+ raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
+ self.gguf_writer.add_add_bos_token(True)
+ self.gguf_writer.add_add_eos_token(True)
+
+
+@Model.register("OpenELMForCausalLM")
+class OpenELMModel(Model):
+ model_arch = gguf.MODEL_ARCH.OPENELM
+
+ @staticmethod
+ def _make_divisible(v: float | int, divisor: int) -> int:
+ # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
+ new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
+ # Make sure that round down does not go down by more than 10%.
+ if new_v < 0.9 * v:
+ new_v += divisor
+ return new_v
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
+ ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
+ self._n_embd: int = self.hparams["model_dim"]
+ self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
+ self._num_query_heads: list[int] = self.hparams["num_query_heads"]
+ self._ffn_dims: list[int] = [
+ OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
+ for multiplier in ffn_multipliers
+ ]
+ assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
+ assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
+
+ # Uses the tokenizer from meta-llama/Llama-2-7b-hf
+ def set_vocab(self):
+ try:
+ self._set_vocab_sentencepiece()
+ except FileNotFoundError:
+ self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
+
+ def set_gguf_parameters(self):
+ n_embd = self._n_embd
+ head_dim = self.hparams["head_dim"]
+ rot_pct = 1.0
+ assert self.block_count == len(self._num_kv_heads)
+ assert self.block_count == len(self._num_query_heads)
+ assert self.block_count == len(self._ffn_dims)
+
+ self.gguf_writer.add_block_count(self.block_count)
+ self.gguf_writer.add_context_length(self.hparams["max_context_length"])
+ self.gguf_writer.add_embedding_length(n_embd)
+ self.gguf_writer.add_feed_forward_length(self._ffn_dims)
+ self.gguf_writer.add_head_count(self._num_query_heads)
+ self.gguf_writer.add_head_count_kv(self._num_kv_heads)
+ self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
+ # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
+ self.gguf_writer.add_layer_norm_rms_eps(1e-6)
+ self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
+ self.gguf_writer.add_key_length(head_dim)
+ self.gguf_writer.add_value_length(head_dim)
+ self.gguf_writer.add_file_type(self.ftype)
+
+ def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
+ if "n_layers" in keys:
+ return self.hparams["num_transformer_layers"]
+
+ return super().find_hparam(keys, optional)
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+
+ # split ff
+ if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
+ ff_dim = self._ffn_dims[bid]
+ yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
+ yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
+ return
+
+ yield (self.map_tensor_name(name), data_torch)
+
+
+@Model.register("ArcticForCausalLM")
+class ArcticModel(Model):
+ model_arch = gguf.MODEL_ARCH.ARCTIC
+
+ def set_vocab(self):
+ # The reason for using a custom implementation here is that the
+ # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
+ # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
+ from sentencepiece import SentencePieceProcessor
+
+ tokenizer_path = self.dir_model / 'tokenizer.model'
+
+ if not tokenizer_path.is_file():
+ logger.error(f'Error: Missing {tokenizer_path}')
+ sys.exit(1)
+
+ # Read the whole vocabulary from the tokenizer.model file
+ tokenizer = SentencePieceProcessor()
+ tokenizer.LoadFromFile(str(tokenizer_path))
+
+ vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+ tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
+ scores: list[float] = [-10000.0] * vocab_size
+ toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
+
+ for token_id in range(tokenizer.vocab_size()):
+
+ piece = tokenizer.IdToPiece(token_id)
+ text = piece.encode("utf-8")
+ score = tokenizer.GetScore(token_id)
+
+ toktype = SentencePieceTokenTypes.NORMAL
+ if tokenizer.IsUnknown(token_id):
+ toktype = SentencePieceTokenTypes.UNKNOWN
+ elif tokenizer.IsControl(token_id):
+ toktype = SentencePieceTokenTypes.CONTROL
+ elif tokenizer.IsUnused(token_id):
+ toktype = SentencePieceTokenTypes.UNUSED
+ elif tokenizer.IsByte(token_id):
+ toktype = SentencePieceTokenTypes.BYTE
+
+ tokens[token_id] = text
+ scores[token_id] = score
+ toktypes[token_id] = toktype
+
+ # Use the added_tokens_decoder field from tokeniser_config.json as the source
+ # of information about added/redefined tokens and modify them accordingly.
+ tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
+ if tokenizer_config_file.is_file():
+ with open(tokenizer_config_file, "r", encoding="utf-8") as f:
+ tokenizer_config_json = json.load(f)
+
+ if "added_tokens_decoder" in tokenizer_config_json:
+ added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
+ for token_id, token_json in added_tokens_decoder.items():
+ token_id = int(token_id)
+ if token_id >= vocab_size:
+ logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
+ continue
+
+ token_content = token_json["content"]
+ token_type = SentencePieceTokenTypes.USER_DEFINED
+ token_score = -10000.0
+
+ # Map unk_token to UNKNOWN, other special tokens to CONTROL
+ # Set the score to 0.0 as in the original tokenizer.model
+ if ("special" in token_json) and token_json["special"]:
+ if token_content == tokenizer_config_json["unk_token"]:
+ token_type = SentencePieceTokenTypes.UNKNOWN
+ else:
+ token_type = SentencePieceTokenTypes.CONTROL
+ token_score = 0.0
+
+ logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
+ tokens[token_id] = token_content.encode("utf-8")
+ toktypes[token_id] = token_type
+ scores[token_id] = token_score
+
+ self.gguf_writer.add_tokenizer_model("llama")
+ self.gguf_writer.add_tokenizer_pre("default")
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_scores(scores)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ hparams = self.hparams
+ self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+ self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
+
+ _experts: list[dict[str, Tensor]] | None = None
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ n_head = self.hparams["num_attention_heads"]
+ n_kv_head = self.hparams.get("num_key_value_heads")
+
+ if name.endswith("q_proj.weight"):
+ data_torch = LlamaModel.permute(data_torch, n_head, n_head)
+ if name.endswith("k_proj.weight"):
+ data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
+
+ # process the experts separately
+ if name.find("block_sparse_moe.experts") != -1:
+ n_experts = self.hparams["num_local_experts"]
+
+ assert bid is not None
+
+ if self._experts is None:
+ self._experts = [{} for _ in range(self.block_count)]
+
+ self._experts[bid][name] = data_torch
+
+ if len(self._experts[bid]) >= n_experts * 3:
+ tensors: list[tuple[str, Tensor]] = []
+
+ # merge the experts into a single 3d tensor
+ for wid in ["w1", "w2", "w3"]:
+ datas: list[Tensor] = []
+
+ for xid in range(n_experts):
+ ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
+ datas.append(self._experts[bid][ename])
+ del self._experts[bid][ename]
+
+ data_torch = torch.stack(datas, dim=0)
+
+ merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
+
+ new_name = self.map_tensor_name(merged_name)
+
+ tensors.append((new_name, data_torch))
+ return tensors
+ else:
+ return []
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+ def prepare_tensors(self):
+ super().prepare_tensors()
+
+ if self._experts is not None:
+ # flatten `list[dict[str, Tensor]]` into `list[str]`
+ experts = [k for d in self._experts for k in d.keys()]
+ if len(experts) > 0:
+ raise ValueError(f"Unprocessed experts: {experts}")
+
+
+@Model.register("DeepseekV2ForCausalLM")
+class DeepseekV2Model(Model):
+ model_arch = gguf.MODEL_ARCH.DEEPSEEK2
+
+ def set_vocab(self):
+ self._set_vocab_gpt2()
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ hparams = self.hparams
+
+ self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
+ self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+ if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
+ self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
+ self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
+ self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
+ self.gguf_writer.add_value_length(hparams["v_head_dim"])
+ self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
+ self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
+ self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
+ self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
+ self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
+
+ if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+ if self.hparams["rope_scaling"].get("type") == "yarn":
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
+ self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+ self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
+ self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
+
+ _experts: list[dict[str, Tensor]] | None = None
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ # process the experts separately
+ if name.find("mlp.experts") != -1:
+ n_experts = self.hparams["n_routed_experts"]
+ assert bid is not None
+
+ if self._experts is None:
+ self._experts = [{} for _ in range(self.block_count)]
+
+ self._experts[bid][name] = data_torch
+
+ if len(self._experts[bid]) >= n_experts * 3:
+ tensors: list[tuple[str, Tensor]] = []
+
+ # merge the experts into a single 3d tensor
+ for w_name in ["down_proj", "gate_proj", "up_proj"]:
+ datas: list[Tensor] = []
+
+ for xid in range(n_experts):
+ ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+ datas.append(self._experts[bid][ename])
+ del self._experts[bid][ename]
+
+ data_torch = torch.stack(datas, dim=0)
+
+ merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+
+ new_name = self.map_tensor_name(merged_name)
+
+ tensors.append((new_name, data_torch))
+ return tensors
+ else:
+ return []
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+ def prepare_tensors(self):
+ super().prepare_tensors()
+
+ if self._experts is not None:
+ # flatten `list[dict[str, Tensor]]` into `list[str]`
+ experts = [k for d in self._experts for k in d.keys()]
+ if len(experts) > 0:
+ raise ValueError(f"Unprocessed experts: {experts}")
+
+
+@Model.register("T5WithLMHeadModel")
+@Model.register("T5ForConditionalGeneration")
+@Model.register("MT5ForConditionalGeneration")
+@Model.register("UMT5ForConditionalGeneration")
+class T5Model(Model):
+ model_arch = gguf.MODEL_ARCH.T5
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.shared_token_embeddings_found = False
+
+ def set_vocab(self):
+ # to avoid TypeError: Descriptors cannot be created directly
+ # exception when importing sentencepiece_model_pb2
+ os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
+ from sentencepiece import SentencePieceProcessor
+ from sentencepiece import sentencepiece_model_pb2 as model
+
+ tokenizer_path = self.dir_model / 'tokenizer.model'
+
+ # many older models use spiece.model tokenizer model filename
+ if not tokenizer_path.is_file():
+ tokenizer_path = self.dir_model / 'spiece.model'
+
+ if not tokenizer_path.is_file():
+ raise FileNotFoundError(f"File not found: {tokenizer_path}")
+
+ sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
+ sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
+
+ # some models like Pile-T5 family use BPE tokenizer instead of Unigram
+ if sentencepiece_model.trainer_spec.model_type == 2: # BPE
+ # assure the tokenizer model file name is correct
+ assert tokenizer_path.name == 'tokenizer.model'
+ return self._set_vocab_sentencepiece()
+ else:
+ assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
+
+ add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
+ remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
+ precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
+
+ tokenizer = SentencePieceProcessor()
+ tokenizer.LoadFromFile(str(tokenizer_path))
+
+ vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+ tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
+ scores: list[float] = [-10000.0] * vocab_size
+ toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
+
+ for token_id in range(tokenizer.vocab_size()):
+ piece = tokenizer.IdToPiece(token_id)
+ text = piece.encode("utf-8")
+ score = tokenizer.GetScore(token_id)
+
+ toktype = SentencePieceTokenTypes.NORMAL
+ if tokenizer.IsUnknown(token_id):
+ toktype = SentencePieceTokenTypes.UNKNOWN
+ elif tokenizer.IsControl(token_id):
+ toktype = SentencePieceTokenTypes.CONTROL
+ elif tokenizer.IsUnused(token_id):
+ toktype = SentencePieceTokenTypes.UNUSED
+ elif tokenizer.IsByte(token_id):
+ toktype = SentencePieceTokenTypes.BYTE
+
+ tokens[token_id] = text
+ scores[token_id] = score
+ toktypes[token_id] = toktype
+
+ added_tokens_file = self.dir_model / 'added_tokens.json'
+ if added_tokens_file.is_file():
+ with open(added_tokens_file, "r", encoding="utf-8") as f:
+ added_tokens_json = json.load(f)
+ for key in added_tokens_json:
+ token_id = added_tokens_json[key]
+ if token_id >= vocab_size:
+ logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
+ continue
+
+ tokens[token_id] = key.encode("utf-8")
+ scores[token_id] = -1000.0
+ toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+
+ if vocab_size > len(tokens):
+ pad_count = vocab_size - len(tokens)
+ logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
+ for i in range(1, pad_count + 1):
+ tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
+ scores.append(-1000.0)
+ toktypes.append(SentencePieceTokenTypes.UNUSED)
+
+ self.gguf_writer.add_tokenizer_model("t5")
+ self.gguf_writer.add_tokenizer_pre("default")
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_scores(scores)
+ self.gguf_writer.add_token_types(toktypes)
+ self.gguf_writer.add_add_space_prefix(add_prefix)
+ self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
+ if precompiled_charsmap:
+ self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
+
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ self.gguf_writer.add_add_bos_token(False)
+ self.gguf_writer.add_add_eos_token(True)
+
+ def set_gguf_parameters(self):
+ if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
+ logger.warning("Couldn't find context length in config.json, assuming default value of 512")
+ n_ctx = 512
+ self.gguf_writer.add_context_length(n_ctx)
+ self.gguf_writer.add_embedding_length(self.hparams["d_model"])
+ self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
+ self.gguf_writer.add_block_count(self.hparams["num_layers"])
+ self.gguf_writer.add_head_count(self.hparams["num_heads"])
+ self.gguf_writer.add_key_length(self.hparams["d_kv"])
+ self.gguf_writer.add_value_length(self.hparams["d_kv"])
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
+ # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
+ # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
+ # and decoder and ignore the remaining ones.
+ if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
+ if not self.shared_token_embeddings_found:
+ name = "shared.weight"
+ self.shared_token_embeddings_found = True
+ else:
+ logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
+ return []
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("JAISLMHeadModel")
+class JaisModel(Model):
+ model_arch = gguf.MODEL_ARCH.JAIS
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ # SwigLU activation
+ assert self.hparams["activation_function"] == "swiglu"
+ # ALiBi position embedding
+ assert self.hparams["position_embedding_type"] == "alibi"
+
+ # Embeddings scale
+ self.embeddings_scale = 1.0
+ # note: For some JAIS flavors, output is tied to (same as) wte in original model
+ self.output_is_wte = False
+ if 'mup_embeddings_scale' in self.hparams:
+ self.output_is_wte = True # Hack (?)
+ self.embeddings_scale = self.hparams['mup_embeddings_scale']
+ elif 'embeddings_scale' in self.hparams:
+ self.embeddings_scale = self.hparams['embeddings_scale']
+ else:
+ assert False
+
+ self.width_scale = 1.0
+ if 'mup_output_alpha' in self.hparams:
+ assert 'mup_width_scale' in self.hparams
+ self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
+ elif 'width_scale' in self.hparams:
+ self.width_scale = self.hparams['width_scale']
+ else:
+ assert False
+
+ self.max_alibi_bias = 8.0
+
+ def set_vocab(self):
+ self._set_vocab_gpt2()
+
+ def set_gguf_parameters(self):
+ self.gguf_writer.add_block_count(self.hparams["n_layer"])
+ self.gguf_writer.add_context_length(self.hparams["n_positions"])
+ self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
+ self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
+ self.gguf_writer.add_head_count(self.hparams["n_head"])
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ tensors: list[tuple[str, Tensor]] = []
+
+ # we don't need these
+ if name.endswith((".attn.bias")):
+ return tensors
+
+ if name.endswith(("relative_pe.slopes")):
+ # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
+ # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
+ # but Jais's PyTorch model simply precalculates the slope values and places them
+ # in relative_pes.slopes
+ n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
+ first_val = float(data_torch[0].item())
+ self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
+
+ return tensors
+
+ if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
+ data_torch = data_torch.transpose(1, 0)
+
+ new_name = self.map_tensor_name(name)
+
+ if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
+ tensors.append((new_name, data_torch * self.embeddings_scale))
+ if self.output_is_wte:
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
+ elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
+ assert not self.output_is_wte
+ tensors.append((new_name, data_torch * self.width_scale))
+ else:
+ tensors.append((new_name, data_torch))
+
+ return tensors
+
+ def prepare_tensors(self):
+ super().prepare_tensors()
+ self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
+
+
+@Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
+class ChatGLMModel(Model):
+ model_arch = gguf.MODEL_ARCH.CHATGLM
+
+ def set_vocab_chatglm3(self):
+ dir_model = self.dir_model
+ hparams = self.hparams
+ tokens: list[bytes] = []
+ toktypes: list[int] = []
+ scores: list[float] = []
+
+ from transformers import AutoTokenizer
+ tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
+ vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
+ assert max(tokenizer.get_vocab().values()) < vocab_size
+ role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
+ special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
+ for token_id in range(vocab_size):
+ piece = tokenizer._convert_id_to_token(token_id)
+ if token_id == 0:
+ piece = "<unk>"
+ elif token_id == 1:
+ piece = "<bos>"
+ elif token_id == 2:
+ piece = "<eos>"
+
+ text = piece.encode("utf-8")
+ score = 0.0
+ # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
+ # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
+ if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
+ score = tokenizer.tokenizer.sp_model.get_score(token_id)
+
+ if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
+ if piece in special_tokens:
+ toktype = SentencePieceTokenTypes.CONTROL
+ elif len(piece) == 0:
+ text = f"[PAD{token_id}]".encode("utf-8")
+ toktype = SentencePieceTokenTypes.UNUSED
+ else:
+ toktype = SentencePieceTokenTypes.USER_DEFINED
+ tokens.append(text)
+ scores.append(score)
+ toktypes.append(toktype)
+ continue
+
+ toktype = SentencePieceTokenTypes.NORMAL
+ if tokenizer.tokenizer.sp_model.is_unknown(token_id):
+ toktype = SentencePieceTokenTypes.UNKNOWN
+ elif tokenizer.tokenizer.sp_model.is_control(token_id):
+ toktype = SentencePieceTokenTypes.CONTROL
+ elif tokenizer.tokenizer.sp_model.is_unused(token_id):
+ toktype = SentencePieceTokenTypes.UNUSED
+ elif tokenizer.tokenizer.sp_model.is_byte(token_id):
+ toktype = SentencePieceTokenTypes.BYTE
+
+ tokens.append(text)
+ scores.append(score)
+ toktypes.append(toktype)
+
+ self.gguf_writer.add_tokenizer_model("llama")
+ # glm3 needs prefix and suffix formatted as:
+ # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
+ self.gguf_writer.add_tokenizer_pre("chatglm-spm")
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_scores(scores)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ @staticmethod
+ def token_bytes_to_string(b):
+ from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
+ byte_encoder = bytes_to_unicode()
+ return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
+
+ @staticmethod
+ def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
+ parts = [bytes([b]) for b in token]
+ while True:
+ min_idx = None
+ min_rank = None
+ for i, pair in enumerate(zip(parts[:-1], parts[1:])):
+ rank = mergeable_ranks.get(pair[0] + pair[1])
+ if rank is not None and (min_rank is None or rank < min_rank):
+ min_idx = i
+ min_rank = rank
+ if min_rank is None or (max_rank is not None and min_rank >= max_rank):
+ break
+ assert min_idx is not None
+ parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
+ return parts
+
+ def set_vocab(self):
+ if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
+ self.set_vocab_chatglm3()
+ return
+
+ dir_model = self.dir_model
+ hparams = self.hparams
+ tokens: list[str] = []
+ toktypes: list[int] = []
+
+ from transformers import AutoTokenizer
+ tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
+ vocab_size = hparams["padded_vocab_size"]
+ assert max(tokenizer.get_vocab().values()) < vocab_size
+
+ tokpre = self.get_vocab_base_pre(tokenizer)
+
+ merges = []
+ vocab = {}
+ mergeable_ranks = tokenizer.mergeable_ranks
+ for token, rank in mergeable_ranks.items():
+ vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
+ if len(token) == 1:
+ continue
+ merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
+ assert len(merged) >= 2 and len(merged) <= 7
+ merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
+
+ # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
+ added_vocab = tokenizer.get_added_vocab()
+ reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
+
+ for i in range(vocab_size):
+ if i not in reverse_vocab:
+ tokens.append(f"[PAD{i}]")
+ toktypes.append(gguf.TokenType.UNUSED)
+ elif reverse_vocab[i] in added_vocab:
+ tokens.append(reverse_vocab[i])
+ if tokenizer.added_tokens_decoder[i].special:
+ toktypes.append(gguf.TokenType.CONTROL)
+ else:
+ toktypes.append(gguf.TokenType.USER_DEFINED)
+ else:
+ tokens.append(reverse_vocab[i])
+ toktypes.append(gguf.TokenType.NORMAL)
+
+ self.gguf_writer.add_tokenizer_model("gpt2")
+ self.gguf_writer.add_tokenizer_pre(tokpre)
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
+ special_vocab.merges = merges
+ # only add special tokens when they were not already loaded from config.json
+ special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
+ special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
+ # this one is usually not in config.json anyway
+ special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def set_gguf_parameters(self):
+ n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
+ n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
+ n_head_kv = self.hparams.get("multi_query_group_num", n_head)
+ self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
+ self.gguf_writer.add_embedding_length(n_embed)
+ self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
+ self.gguf_writer.add_block_count(self.hparams["num_layers"])
+ self.gguf_writer.add_head_count(n_head)
+ self.gguf_writer.add_head_count_kv(n_head_kv)
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
+ self.gguf_writer.add_file_type(self.ftype)
+ self.gguf_writer.add_rope_dimension_count(64)
+ self.gguf_writer.add_add_bos_token(False)
+ rope_freq = 10000
+ if "rope_ratio" in self.hparams:
+ rope_freq = rope_freq * self.hparams["rope_ratio"]
+ self.gguf_writer.add_rope_freq_base(rope_freq)
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+
+ if name.endswith(".rotary_pos_emb.inv_freq"):
+ return []
+
+ name = name.removeprefix("transformer.")
+ return [(self.map_tensor_name(name), data_torch)]
+
+###### CONVERSION LOGIC ######
+
+
+# tree of lazy tensors
+class LazyTorchTensor(gguf.LazyBase):
+ _tensor_type = torch.Tensor
+ # to keep the type-checker happy
+ dtype: torch.dtype
+ shape: torch.Size
+
+ # only used when converting a torch.Tensor to a np.ndarray
+ _dtype_map: dict[torch.dtype, type] = {
+ torch.float16: np.float16,
+ torch.float32: np.float32,
+ }
+
+ # used for safetensors slices
+ # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
+ # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
+ _dtype_str_map: dict[str, torch.dtype] = {
+ "F64": torch.float64,
+ "F32": torch.float32,
+ "BF16": torch.bfloat16,
+ "F16": torch.float16,
+ # "U64": torch.uint64,
+ "I64": torch.int64,
+ # "U32": torch.uint32,
+ "I32": torch.int32,
+ # "U16": torch.uint16,
+ "I16": torch.int16,
+ "U8": torch.uint8,
+ "I8": torch.int8,
+ "BOOL": torch.bool,
+ "F8_E4M3": torch.float8_e4m3fn,
+ "F8_E5M2": torch.float8_e5m2,
+ }
+
+ def numpy(self) -> gguf.LazyNumpyTensor:
+ dtype = self._dtype_map[self.dtype]
+ return gguf.LazyNumpyTensor(
+ meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
+ args=(self,),
+ func=(lambda s: s.numpy())
+ )
+
+ @classmethod
+ def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
+ return torch.empty(size=shape, dtype=dtype, device="meta")
+
+ @classmethod
+ def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
+ dtype = cls._dtype_str_map[st_slice.get_dtype()]
+ shape: tuple[int, ...] = tuple(st_slice.get_shape())
+ lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
+ return cast(torch.Tensor, lazy)
+
+ @classmethod
+ def __torch_function__(cls, func, types, args=(), kwargs=None):
+ del types # unused
+
+ if kwargs is None:
+ kwargs = {}
+
+ if func is torch.Tensor.numpy:
+ return args[0].numpy()
+
+ return cls._wrap_fn(func)(*args, **kwargs)
+
+
+def parse_args() -> argparse.Namespace:
+ parser = argparse.ArgumentParser(
+ description="Convert a huggingface model to a GGML compatible file")
+ parser.add_argument(
+ "--vocab-only", action="store_true",
+ help="extract only the vocab",
+ )
+ parser.add_argument(
+ "--outfile", type=Path,
+ help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
+ )
+ parser.add_argument(
+ "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
+ help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
+ )
+ parser.add_argument(
+ "--bigendian", action="store_true",
+ help="model is executed on big endian machine",
+ )
+ parser.add_argument(
+ "model", type=Path,
+ help="directory containing model file",
+ )
+ parser.add_argument(
+ "--use-temp-file", action="store_true",
+ help="use the tempfile library while processing (helpful when running out of memory, process killed)",
+ )
+ parser.add_argument(
+ "--no-lazy", action="store_true",
+ help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
+ )
+ parser.add_argument(
+ "--model-name", type=str, default=None,
+ help="name of the model",
+ )
+ parser.add_argument(
+ "--verbose", action="store_true",
+ help="increase output verbosity",
+ )
+ parser.add_argument(
+ "--split-max-tensors", type=int, default=0,
+ help="max tensors in each split",
+ )
+ parser.add_argument(
+ "--split-max-size", type=str, default="0",
+ help="max size per split N(M|G)",
+ )
+ parser.add_argument(
+ "--dry-run", action="store_true",
+ help="only print out a split plan and exit, without writing any new files",
+ )
+ parser.add_argument(
+ "--no-tensor-first-split", action="store_true",
+ help="do not add tensors to the first split (disabled by default)"
+ )
+ parser.add_argument(
+ "--metadata", type=Path,
+ help="Specify the path for an authorship metadata override file"
+ )
+
+ return parser.parse_args()
+
+
+def split_str_to_n_bytes(split_str: str) -> int:
+ if split_str.endswith("K"):
+ n = int(split_str[:-1]) * 1000
+ elif split_str.endswith("M"):
+ n = int(split_str[:-1]) * 1000 * 1000
+ elif split_str.endswith("G"):
+ n = int(split_str[:-1]) * 1000 * 1000 * 1000
+ elif split_str.isnumeric():
+ n = int(split_str)
+ else:
+ raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
+
+ if n < 0:
+ raise ValueError(f"Invalid split size: {split_str}, must be positive")
+
+ return n
+
+
+def main() -> None:
+ args = parse_args()
+
+ if args.verbose:
+ logging.basicConfig(level=logging.DEBUG)
+ else:
+ logging.basicConfig(level=logging.INFO)
+
+ dir_model = args.model
+
+ if not dir_model.is_dir():
+ logger.error(f'Error: {args.model} is not a directory')
+ sys.exit(1)
+
+ ftype_map: dict[str, gguf.LlamaFileType] = {
+ "f32": gguf.LlamaFileType.ALL_F32,
+ "f16": gguf.LlamaFileType.MOSTLY_F16,
+ "bf16": gguf.LlamaFileType.MOSTLY_BF16,
+ "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
+ "auto": gguf.LlamaFileType.GUESSED,
+ }
+
+ is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
+ if args.use_temp_file and is_split:
+ logger.error("Error: Cannot use temp file when splitting")
+ sys.exit(1)
+
+ if args.outfile is not None:
+ fname_out = args.outfile
+ else:
+ fname_out = dir_model
+
+ logger.info(f"Loading model: {dir_model.name}")
+
+ hparams = Model.load_hparams(dir_model)
+
+ with torch.inference_mode():
+ output_type = ftype_map[args.outtype]
+ model_architecture = hparams["architectures"][0]
+
+ try:
+ model_class = Model.from_model_architecture(model_architecture)
+ except NotImplementedError:
+ logger.error(f"Model {model_architecture} is not supported")
+ sys.exit(1)
+
+ model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
+ is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
+ eager=args.no_lazy,
+ metadata_override=args.metadata, model_name=args.model_name,
+ split_max_tensors=args.split_max_tensors,
+ split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
+ small_first_shard=args.no_tensor_first_split)
+
+ if args.vocab_only:
+ logger.info("Exporting model vocab...")
+ model_instance.write_vocab()
+ logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
+ else:
+ logger.info("Exporting model...")
+ model_instance.write()
+ out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
+ logger.info(f"Model successfully exported to {out_path}")
+
+
+if __name__ == '__main__':
+ main()