diff options
Diffstat (limited to 'examples/common.h')
-rw-r--r-- | examples/common.h | 114 |
1 files changed, 0 insertions, 114 deletions
diff --git a/examples/common.h b/examples/common.h deleted file mode 100644 index 375bc0a3..00000000 --- a/examples/common.h +++ /dev/null @@ -1,114 +0,0 @@ -// Various helper functions and utilities - -#pragma once - -#include "llama.h" - -#include <string> -#include <vector> -#include <random> -#include <thread> -#include <unordered_map> -#include <tuple> - -// -// CLI argument parsing -// -int32_t get_num_physical_cores(); - -struct gpt_params { - uint32_t seed = -1; // RNG seed - int32_t n_threads = get_num_physical_cores(); - int32_t n_predict = -1; // new tokens to predict - int32_t n_ctx = 512; // context size - int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) - int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams) - int32_t n_keep = 0; // number of tokens to keep from initial prompt - int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) - int32_t n_gpu_layers = 0; // number of layers to store in VRAM - int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors - float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs - int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. - float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; // rms norm epsilon - float rope_freq_base = 10000.0f; // RoPE base frequency - float rope_freq_scale = 1.0f; // RoPE frequency scaling factor - - // sampling parameters - std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens - int32_t top_k = 40; // <= 0 to use vocab size - float top_p = 0.95f; // 1.0 = disabled - float tfs_z = 1.00f; // 1.0 = disabled - float typical_p = 1.00f; // 1.0 = disabled - float temp = 0.80f; // 1.0 = disabled - float repeat_penalty = 1.10f; // 1.0 = disabled - int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) - float frequency_penalty = 0.00f; // 0.0 = disabled - float presence_penalty = 0.00f; // 0.0 = disabled - int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 - float mirostat_tau = 5.00f; // target entropy - float mirostat_eta = 0.10f; // learning rate - - // Classifier-Free Guidance - // https://arxiv.org/abs/2306.17806 - std::string cfg_negative_prompt; // string to help guidance - float cfg_scale = 1.f; // How strong is guidance - - std::string model = "models/7B/ggml-model.bin"; // model path - std::string model_alias = "unknown"; // model alias - std::string prompt = ""; - std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state - std::string input_prefix = ""; // string to prefix user inputs with - std::string input_suffix = ""; // string to suffix user inputs with - std::string grammar = ""; // optional BNF-like grammar to constrain sampling - std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted - - std::string lora_adapter = ""; // lora adapter path - std::string lora_base = ""; // base model path for the lora adapter - - bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt - size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score - - bool low_vram = false; // if true, reduce VRAM usage at the cost of performance - bool mul_mat_q = false; // if true, use experimental mul_mat_q kernels - bool memory_f16 = true; // use f16 instead of f32 for memory kv - bool random_prompt = false; // do not randomize prompt if none provided - bool use_color = false; // use color to distinguish generations and inputs - bool interactive = false; // interactive mode - bool prompt_cache_all = false; // save user input and generations to prompt cache - bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it - - bool embedding = false; // get only sentence embedding - bool interactive_first = false; // wait for user input immediately - bool multiline_input = false; // reverse the usage of `\` - bool simple_io = false; // improves compatibility with subprocesses and limited consoles - - bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix - bool instruct = false; // instruction mode (used for Alpaca models) - bool penalize_nl = true; // consider newlines as a repeatable token - bool perplexity = false; // compute perplexity over the prompt - bool use_mmap = true; // use mmap for faster loads - bool use_mlock = false; // use mlock to keep model in memory - bool mem_test = false; // compute maximum memory usage - bool numa = false; // attempt optimizations that help on some NUMA systems - bool export_cgraph = false; // export the computation graph - bool verbose_prompt = false; // print prompt tokens before generation -}; - -bool gpt_params_parse(int argc, char ** argv, gpt_params & params); - -void gpt_print_usage(int argc, char ** argv, const gpt_params & params); - -std::string gpt_random_prompt(std::mt19937 & rng); - -// -// Vocab utils -// - -std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos); - -// -// Model utils -// - -std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params); -struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params); |