summaryrefslogtreecommitdiff
path: root/examples/common.h
diff options
context:
space:
mode:
Diffstat (limited to 'examples/common.h')
-rw-r--r--examples/common.h114
1 files changed, 0 insertions, 114 deletions
diff --git a/examples/common.h b/examples/common.h
deleted file mode 100644
index 375bc0a3..00000000
--- a/examples/common.h
+++ /dev/null
@@ -1,114 +0,0 @@
-// Various helper functions and utilities
-
-#pragma once
-
-#include "llama.h"
-
-#include <string>
-#include <vector>
-#include <random>
-#include <thread>
-#include <unordered_map>
-#include <tuple>
-
-//
-// CLI argument parsing
-//
-int32_t get_num_physical_cores();
-
-struct gpt_params {
- uint32_t seed = -1; // RNG seed
- int32_t n_threads = get_num_physical_cores();
- int32_t n_predict = -1; // new tokens to predict
- int32_t n_ctx = 512; // context size
- int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
- int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
- int32_t n_keep = 0; // number of tokens to keep from initial prompt
- int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
- int32_t n_gpu_layers = 0; // number of layers to store in VRAM
- int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
- float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
- int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
- float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; // rms norm epsilon
- float rope_freq_base = 10000.0f; // RoPE base frequency
- float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
-
- // sampling parameters
- std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
- int32_t top_k = 40; // <= 0 to use vocab size
- float top_p = 0.95f; // 1.0 = disabled
- float tfs_z = 1.00f; // 1.0 = disabled
- float typical_p = 1.00f; // 1.0 = disabled
- float temp = 0.80f; // 1.0 = disabled
- float repeat_penalty = 1.10f; // 1.0 = disabled
- int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
- float frequency_penalty = 0.00f; // 0.0 = disabled
- float presence_penalty = 0.00f; // 0.0 = disabled
- int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
- float mirostat_tau = 5.00f; // target entropy
- float mirostat_eta = 0.10f; // learning rate
-
- // Classifier-Free Guidance
- // https://arxiv.org/abs/2306.17806
- std::string cfg_negative_prompt; // string to help guidance
- float cfg_scale = 1.f; // How strong is guidance
-
- std::string model = "models/7B/ggml-model.bin"; // model path
- std::string model_alias = "unknown"; // model alias
- std::string prompt = "";
- std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
- std::string input_prefix = ""; // string to prefix user inputs with
- std::string input_suffix = ""; // string to suffix user inputs with
- std::string grammar = ""; // optional BNF-like grammar to constrain sampling
- std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
-
- std::string lora_adapter = ""; // lora adapter path
- std::string lora_base = ""; // base model path for the lora adapter
-
- bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
- size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
-
- bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
- bool mul_mat_q = false; // if true, use experimental mul_mat_q kernels
- bool memory_f16 = true; // use f16 instead of f32 for memory kv
- bool random_prompt = false; // do not randomize prompt if none provided
- bool use_color = false; // use color to distinguish generations and inputs
- bool interactive = false; // interactive mode
- bool prompt_cache_all = false; // save user input and generations to prompt cache
- bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
-
- bool embedding = false; // get only sentence embedding
- bool interactive_first = false; // wait for user input immediately
- bool multiline_input = false; // reverse the usage of `\`
- bool simple_io = false; // improves compatibility with subprocesses and limited consoles
-
- bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
- bool instruct = false; // instruction mode (used for Alpaca models)
- bool penalize_nl = true; // consider newlines as a repeatable token
- bool perplexity = false; // compute perplexity over the prompt
- bool use_mmap = true; // use mmap for faster loads
- bool use_mlock = false; // use mlock to keep model in memory
- bool mem_test = false; // compute maximum memory usage
- bool numa = false; // attempt optimizations that help on some NUMA systems
- bool export_cgraph = false; // export the computation graph
- bool verbose_prompt = false; // print prompt tokens before generation
-};
-
-bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
-
-void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
-
-std::string gpt_random_prompt(std::mt19937 & rng);
-
-//
-// Vocab utils
-//
-
-std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos);
-
-//
-// Model utils
-//
-
-std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params);
-struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);