diff options
Diffstat (limited to 'examples/convert-legacy-llama.py')
-rwxr-xr-x | examples/convert-legacy-llama.py | 1416 |
1 files changed, 0 insertions, 1416 deletions
diff --git a/examples/convert-legacy-llama.py b/examples/convert-legacy-llama.py deleted file mode 100755 index 721a57c0..00000000 --- a/examples/convert-legacy-llama.py +++ /dev/null @@ -1,1416 +0,0 @@ -#!/usr/bin/env python3 -from __future__ import annotations - -import logging -import argparse -import concurrent.futures -import enum -import faulthandler -import functools -import itertools -import json -import math -import mmap -import os -import pickle -import re -import signal -import struct -import sys -import textwrap -import time -import zipfile -from abc import ABC, abstractmethod -from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor -from dataclasses import dataclass -from pathlib import Path -from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar, Optional - -import numpy as np - -if 'NO_LOCAL_GGUF' not in os.environ: - # use .parent.parent since we are in "examples" directory - sys.path.insert(1, str(Path(__file__).parent.parent / 'gguf-py')) - -import gguf -from gguf import BaseVocab, Vocab, NoVocab, BpeVocab, SentencePieceVocab, LlamaHfVocab - -if TYPE_CHECKING: - from typing_extensions import Self, TypeAlias - -logger = logging.getLogger("convert") - -if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'): - faulthandler.register(signal.SIGUSR1) - -NDArray: TypeAlias = 'np.ndarray[Any, Any]' - -ARCH = gguf.MODEL_ARCH.LLAMA - -DEFAULT_CONCURRENCY = 8 - -ADDED_TOKENS_FILE = 'added_tokens.json' -FAST_TOKENIZER_FILE = 'tokenizer.json' - -# -# data types -# - - -@dataclass(frozen=True) -class DataType: - name: str - dtype: np.dtype[Any] - valid_conversions: list[str] - - def elements_to_bytes(self, n_elements: int) -> int: - return n_elements * self.dtype.itemsize - - -@dataclass(frozen=True) -class UnquantizedDataType(DataType): - pass - - -DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0']) -DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0']) -DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = []) -DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0']) - - -@dataclass(frozen=True) -class QuantizedDataType(DataType): - block_size: int - quantized_dtype: np.dtype[Any] - ggml_type: gguf.GGMLQuantizationType - - def quantize(self, arr: NDArray) -> NDArray: - raise NotImplementedError(f'Quantization for {self.name} not implemented') - - def elements_to_bytes(self, n_elements: int) -> int: - assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}' - return self.quantized_dtype.itemsize * (n_elements // self.block_size) - - -@dataclass(frozen=True) -class Q8_0QuantizedDataType(QuantizedDataType): - # Mini Q8_0 quantization in Python! - def quantize(self, arr: NDArray) -> NDArray: - assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}' - assert arr.dtype == np.float32, f'Bad array type {arr.dtype}' - n_blocks = arr.size // self.block_size - blocks = arr.reshape((n_blocks, self.block_size)) - # Much faster implementation of block quantization contributed by @Cebtenzzre - - def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]: - d = abs(blocks).max(axis = 1) / np.float32(127) - with np.errstate(divide = 'ignore'): - qs = (blocks / d[:, None]).round() - qs[d == 0] = 0 - yield from zip(d, qs) - return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype) - - -DT_Q8_0 = Q8_0QuantizedDataType('Q8_0', - dtype = np.dtype(np.float32), valid_conversions = [], - ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32, - quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))])) - -# Quantized types skipped here because they may also map to np.float32 -NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {} -for dt in (DT_BF16, DT_F16, DT_F32, DT_I32): - if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE: - raise ValueError(f'Invalid duplicate data type {dt}') - NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt - -SAFETENSORS_DATA_TYPES: dict[str, DataType] = { - 'BF16': DT_BF16, - 'F16': DT_F16, - 'F32': DT_F32, - 'I32': DT_I32, -} - -# TODO: match this with `llama_ftype` -# TODO: rename to LLAMAFileType -# TODO: move to `gguf.py` - - -class GGMLFileType(enum.IntEnum): - AllF32 = 0 - MostlyF16 = 1 # except 1d tensors - MostlyQ8_0 = 7 # except 1d tensors - - def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType: - dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self) - if dt is None: - raise ValueError(self) - # Convert all 1D tensors to F32. Most of the codebase that takes in 1D tensors only handles F32 tensors, and most of the outputs tensors are F32. - # Also The 1d tensors aren't much of a performance/size issue. So instead of having to have separate F32 and F16 implementations of both, just convert everything to F32 for now. - return dt if len(tensor.shape) > 1 else DT_F32 - - -GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = { - GGMLFileType.AllF32 : DT_F32, - GGMLFileType.MostlyF16 : DT_F16, - GGMLFileType.MostlyQ8_0: DT_Q8_0, -} - -# -# hparams loading -# - - -@dataclass -class Params: - n_vocab: int - n_embd: int - n_layer: int - n_ctx: int - n_ff: int - n_head: int - n_head_kv: int - n_experts: int | None = None - n_experts_used: int | None = None - f_norm_eps: float | None = None - - rope_scaling_type: gguf.RopeScalingType | None = None - f_rope_freq_base: float | None = None - f_rope_scale: float | None = None - n_ctx_orig: int | None = None - rope_finetuned: bool | None = None - - ftype: GGMLFileType | None = None - - # path to the directory containing the model files - path_model: Path | None = None - - @staticmethod - def guessed(model: LazyModel) -> Params: - # try transformer naming first - n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape - - # try transformer naming first - if "model.layers.0.self_attn.q_proj.weight" in model: - n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model) - elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming - n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model) - else: - n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model) - - if n_layer < 1: - msg = """\ - failed to guess 'n_layer'. This model is unknown or unsupported. - Suggestion: provide 'config.json' of the model in the same directory containing model files.""" - raise KeyError(textwrap.dedent(msg)) - - n_head = n_embd // 128 # guessed - n_mult = 256 # guessed - - # TODO: verify this - n_ff = int(2 * (4 * n_embd) / 3) - n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult) - - return Params( - n_vocab = n_vocab, - n_embd = n_embd, - n_layer = n_layer, - n_ctx = -1, - n_ff = n_ff, - n_head = n_head, - n_head_kv = n_head, - f_norm_eps = 1e-5, - ) - - @staticmethod - def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params: - with open(config_path) as f: - config = json.load(f) - - rope_scaling_type = f_rope_scale = n_ctx_orig = rope_finetuned = None - rope_scaling = config.get("rope_scaling") - - if rope_scaling is not None and (typ := rope_scaling.get("type")): - rope_factor = rope_scaling.get("factor") - f_rope_scale = rope_factor - if typ == "linear": - rope_scaling_type = gguf.RopeScalingType.LINEAR - elif typ == "yarn": - rope_scaling_type = gguf.RopeScalingType.YARN - n_ctx_orig = rope_scaling['original_max_position_embeddings'] - rope_finetuned = rope_scaling['finetuned'] - else: - raise NotImplementedError(f'Unknown rope scaling type: {typ}') - - if "max_sequence_length" in config: - n_ctx = config["max_sequence_length"] - elif "max_position_embeddings" in config: - n_ctx = config["max_position_embeddings"] - else: - msg = """\ - failed to guess 'n_ctx'. This model is unknown or unsupported. - Suggestion: provide 'config.json' of the model in the same directory containing model files.""" - raise KeyError(textwrap.dedent(msg)) - - n_experts = None - n_experts_used = None - - if "num_local_experts" in config: - n_experts = config["num_local_experts"] - n_experts_used = config["num_experts_per_tok"] - - return Params( - n_vocab = config["vocab_size"], - n_embd = config["hidden_size"], - n_layer = config["num_hidden_layers"], - n_ctx = n_ctx, - n_ff = config["intermediate_size"], - n_head = (n_head := config["num_attention_heads"]), - n_head_kv = config.get("num_key_value_heads", n_head), - n_experts = n_experts, - n_experts_used = n_experts_used, - f_norm_eps = config["rms_norm_eps"], - f_rope_freq_base = config.get("rope_theta"), - rope_scaling_type = rope_scaling_type, - f_rope_scale = f_rope_scale, - n_ctx_orig = n_ctx_orig, - rope_finetuned = rope_finetuned, - ) - - # LLaMA v2 70B params.json - # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1} - @staticmethod - def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params: - with open(config_path) as f: - config = json.load(f) - - n_experts = None - n_experts_used = None - f_rope_freq_base = None - n_ff = None - - # hack to determine LLaMA v1 vs v2 vs CodeLlama - if config.get("moe"): - # Mixtral - n_ctx = 32768 - elif config.get("rope_theta") == 1000000: - # CodeLlama - n_ctx = 16384 - elif config["norm_eps"] == 1e-05: - # LLaMA v2 - n_ctx = 4096 - else: - # LLaMA v1 - n_ctx = 2048 - - if "layers.0.feed_forward.w1.weight" in model: - n_ff = model["layers.0.feed_forward.w1.weight"].shape[0] - - if config.get("moe"): - n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0] - n_experts = config["moe"]["num_experts"] - n_experts_used = config["moe"]["num_experts_per_tok"] - f_rope_freq_base = 1e6 - - assert n_ff is not None - - return Params( - n_vocab = model["tok_embeddings.weight"].shape[0], - n_embd = config["dim"], - n_layer = config["n_layers"], - n_ctx = n_ctx, - n_ff = n_ff, - n_head = (n_head := config["n_heads"]), - n_head_kv = config.get("n_kv_heads", n_head), - n_experts = n_experts, - n_experts_used = n_experts_used, - f_norm_eps = config["norm_eps"], - f_rope_freq_base = config.get("rope_theta", f_rope_freq_base), - ) - - @staticmethod - def load(model_plus: ModelPlus) -> Params: - hf_config_path = model_plus.paths[0].parent / "config.json" - orig_config_path = model_plus.paths[0].parent / "params.json" - - if hf_config_path.exists(): - params = Params.loadHFTransformerJson(model_plus.model, hf_config_path) - elif orig_config_path.exists(): - params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path) - elif model_plus.format != 'none': - params = Params.guessed(model_plus.model) - else: - raise ValueError('Cannot guess params when model format is none') - - params.path_model = model_plus.paths[0].parent - - return params - - -@dataclass -class Metadata: - name: Optional[str] = None - author: Optional[str] = None - version: Optional[str] = None - url: Optional[str] = None - description: Optional[str] = None - licence: Optional[str] = None - source_url: Optional[str] = None - source_hf_repo: Optional[str] = None - - @staticmethod - def load(metadata_path: Path) -> Metadata: - if metadata_path is None or not metadata_path.exists(): - return Metadata() - - with open(metadata_path, 'r') as file: - data = json.load(file) - - # Create a new Metadata instance - metadata = Metadata() - - # Assigning values to Metadata attributes if they exist in the JSON file - # This is based on LLM_KV_NAMES mapping in llama.cpp - metadata.name = data.get("general.name") - metadata.author = data.get("general.author") - metadata.version = data.get("general.version") - metadata.url = data.get("general.url") - metadata.description = data.get("general.description") - metadata.license = data.get("general.license") - metadata.source_url = data.get("general.source.url") - metadata.source_hf_repo = data.get("general.source.huggingface.repository") - - return metadata - - -# -# data loading -# TODO: reuse (probably move to gguf.py?) -# - - -def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray: - if n_head_kv is not None and n_head != n_head_kv: - n_head = n_head_kv - return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) - .swapaxes(1, 2) - .reshape(weights.shape)) - - -class Tensor(ABC): - ndarray: NDArray - data_type: DataType - - @abstractmethod - def astype(self, data_type: DataType) -> Self: ... - @abstractmethod - def permute(self, n_head: int, n_head_kv: int) -> Self: ... - @abstractmethod - def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> Self: ... - @abstractmethod - def part(self, n_part: int) -> Self: ... - @abstractmethod - def to_ggml(self) -> GGMLCompatibleTensor: ... - - -def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray: - assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}" - fp32_arr = bf16_arr.astype(np.uint32) << 16 - return fp32_arr.view(np.float32) - - -class UnquantizedTensor(Tensor): - def __init__(self, ndarray: NDArray): - assert isinstance(ndarray, np.ndarray) - self.ndarray = ndarray - self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype] - - def astype(self, data_type: DataType) -> UnquantizedTensor: - dtype = data_type.dtype - if self.data_type == DT_BF16: - self.ndarray = bf16_to_fp32(self.ndarray) - return UnquantizedTensor(self.ndarray.astype(dtype)) - - def to_ggml(self) -> Self: - return self - - def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: - r = self.ndarray.shape[0] // 3 - return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv)) - - def part(self, n_part: int) -> UnquantizedTensor: - r = self.ndarray.shape[0] // 3 - return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...]) - - def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor: - return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv)) - - -def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray: - tensor = lazy_tensor.load() - assert isinstance(tensor, UnquantizedTensor) - - # double-check: - actual_shape = list(tensor.ndarray.shape) - assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape) - if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype: - if convert: - tensor.ndarray = tensor.ndarray.astype(expected_dtype) - else: - raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}') - - return tensor.ndarray - - -GGMLCompatibleTensor = UnquantizedTensor - - -@dataclass -class LazyTensor: - _load: Callable[[], Tensor] - shape: list[int] - data_type: DataType - description: str - - def load(self) -> Tensor: - ret = self._load() - # Should be okay if it maps to the same numpy type? - assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \ - (self.data_type, ret.data_type, self.description) - return ret - - def astype(self, data_type: DataType) -> LazyTensor: - self.validate_conversion_to(data_type) - - def load() -> Tensor: - return self.load().astype(data_type) - return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}') - - def validate_conversion_to(self, data_type: DataType) -> None: - if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions: - raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.') - - -LazyModel: TypeAlias = 'dict[str, LazyTensor]' - - -@dataclass -class ModelPlus: - model: LazyModel - paths: list[Path] # Where this was read from. - format: Literal['ggml', 'torch', 'safetensors', 'none'] - vocab: BaseVocab | None # For GGML models (which have vocab built in), the vocab. - - -def merge_sharded(models: list[LazyModel]) -> LazyModel: - # Original LLaMA models have each file contain one part of each tensor. - # Use a dict instead of a set to preserve order. - names = {name: None for model in models for name in model} - - def convert(name: str) -> LazyTensor: - lazy_tensors = [model[name] for model in models] - if len(lazy_tensors) == 1: - # only one file; don't go through this procedure since there might - # be quantized tensors - return lazy_tensors[0] - if len(lazy_tensors[0].shape) == 1: - # the tensor is just duplicated in every file - return lazy_tensors[0] - if name.startswith('tok_embeddings.') or \ - name.endswith('.attention.wo.weight') or \ - name.endswith('.feed_forward.w2.weight'): - # split by columns - axis = 1 - else: - # split by rows - axis = 0 - concatenated_shape = list(lazy_tensors[0].shape) - concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors) - - def load() -> UnquantizedTensor: - ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors] - concatenated = np.concatenate(ndarrays, axis=axis) - return UnquantizedTensor(concatenated) - description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]' - return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description) - return {name: convert(name) for name in names} - - -def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus: - formats = set(mp.format for mp in models_plus) - assert len(formats) == 1, "different formats?" - format = formats.pop() - paths = [path for mp in models_plus for path in mp.paths] - # Use the first non-None vocab, if any. - try: - vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None) - except StopIteration: - vocab = None - - if any("model.embed_tokens.weight" in mp.model for mp in models_plus): - # Transformers models put different tensors in different files, but - # don't split individual tensors between files. - model: LazyModel = {} - for mp in models_plus: - model.update(mp.model) - else: - model = merge_sharded([mp.model for mp in models_plus]) - - return ModelPlus(model, paths, format, vocab) # pytype: disable=wrong-arg-types - - -def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor: - def load() -> Tensor: - return lazy_tensor.load().permute(n_head, n_head_kv) - return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description) - - -def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor: - def load() -> Tensor: - return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv) - s = lazy_tensor.shape.copy() - s[0] = s[0] // 3 - return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description) - - -def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor: - def load() -> Tensor: - return lazy_tensor.load().part(n_part) - s = lazy_tensor.shape.copy() - s[0] = s[0] // 3 - return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description) - - -def pack_experts_lazy(lazy_tensors: list[LazyTensor]) -> LazyTensor: - def load() -> Tensor: - tensors = [lazy_tensor.load() for lazy_tensor in lazy_tensors] - return UnquantizedTensor(np.array([tensor.ndarray for tensor in tensors])) - s = lazy_tensors[0].shape.copy() - s.insert(0, len(lazy_tensors)) - return LazyTensor(load, s, lazy_tensors[0].data_type, 'pack_experts ' + ' | '.join(lt.description for lt in lazy_tensors)) - - -# Functionality that simulates `torch.load` but where individual tensors are -# only loaded into memory on demand, not all at once. -# PyTorch can't do this natively as of time of writing: -# - https://github.com/pytorch/pytorch/issues/64327 -# This allows us to de-shard without multiplying RAM usage, and also -# conveniently drops the PyTorch dependency (though we still need numpy). - - -@dataclass -class LazyStorageKind: - data_type: DataType - - -@dataclass -class LazyStorage: - load: Callable[[int, int], NDArray] - kind: LazyStorageKind - description: str - - -class LazyUnpickler(pickle.Unpickler): - def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile): - super().__init__(fp) - self.data_base_path = data_base_path - self.zip_file = zip_file - - def persistent_load(self, pid: Any) -> Any: - assert pid[0] == 'storage' - assert isinstance(pid[1], LazyStorageKind) - data_type = pid[1].data_type - filename_stem = pid[2] - filename = f'{self.data_base_path}/{filename_stem}' - info = self.zip_file.getinfo(filename) - - def load(offset: int, elm_count: int) -> NDArray: - dtype = data_type.dtype - with self.zip_file.open(info) as fp: - fp.seek(offset * dtype.itemsize) - size = elm_count * dtype.itemsize - data = fp.read(size) - assert len(data) == size - return np.frombuffer(data, dtype) - description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}' - return LazyStorage(load=load, kind=pid[1], description=description) - - @staticmethod - def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, - requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor: - assert isinstance(storage, LazyStorage) - - def load() -> UnquantizedTensor: - elm_count = stride[0] * size[0] - return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size)) - description = f'pickled storage_offset={storage_offset} in {storage.description}' - return LazyTensor(load, list(size), storage.kind.data_type, description) - - @staticmethod - def rebuild_from_type_v2(func, new_type, args, state): - return func(*args) - - CLASSES: dict[tuple[str, str], type[LazyTensor] | LazyStorageKind] = { - # getattr used here as a workaround for mypy not being smart enough to determine - # the staticmethods have a __func__ attribute. - ('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'), - ('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'), - ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16), - ('torch', 'HalfStorage'): LazyStorageKind(DT_F16), - ('torch', 'FloatStorage'): LazyStorageKind(DT_F32), - ('torch', 'IntStorage'): LazyStorageKind(DT_I32), - ('torch', 'Tensor'): LazyTensor, - } - - def find_class(self, module: str, name: str) -> Any: - if not module.startswith('torch'): - return super().find_class(module, name) - return self.CLASSES[(module, name)] - - -def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus: - zf = zipfile.ZipFile(outer_fp) - pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')] - assert len(pickle_paths) == 1, pickle_paths - pickle_fp = zf.open(pickle_paths[0], 'r') - unpickler = LazyUnpickler(pickle_fp, - data_base_path=pickle_paths[0][:-4], - zip_file=zf) - model = unpickler.load() - if 'model' in model: model = model['model'] - as_dict = dict(model.items()) - return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None) - - -def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus: - header_size, = struct.unpack('<Q', fp.read(8)) - header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size)) - # Use mmap for the actual data to avoid race conditions with the file offset. - mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) - byte_buf = mapped[8 + header_size:] - - def convert(info: dict[str, Any]) -> LazyTensor: - data_type = SAFETENSORS_DATA_TYPES[info['dtype']] - numpy_dtype = data_type.dtype - shape: list[int] = info['shape'] - begin, end = info['data_offsets'] - assert 0 <= begin <= end <= len(byte_buf) - assert end - begin == math.prod(shape) * numpy_dtype.itemsize - buf = byte_buf[begin:end] - - def load() -> UnquantizedTensor: - return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) - description = f'safetensors begin={begin} end={end} type={data_type} path={path}' - return LazyTensor(load, shape, data_type, description) - model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'} - return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None) - - -def must_read(fp: IO[bytes], length: int) -> bytes: - ret = fp.read(length) - if len(ret) < length: - raise EOFError("unexpectedly reached end of file") - return ret - - -@functools.lru_cache(maxsize=None) -def lazy_load_file(path: Path) -> ModelPlus: - fp = open(path, 'rb') - first8 = fp.read(8) - fp.seek(0) - if first8[:2] == b'PK': - # A zip file, i.e. PyTorch format - return lazy_load_torch_file(fp, path) - elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024: - # Probably safetensors - return lazy_load_safetensors_file(fp, path) - else: - raise ValueError(f"unknown format: {path}") - - -In = TypeVar('In') -Out = TypeVar('Out') - - -def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]: - '''Parallel map, but with backpressure. If the caller doesn't call `next` - fast enough, this will stop calling `func` at some point rather than - letting results pile up in memory. Specifically, there is a max of one - output value buffered per thread.''' - if concurrency < 2: - yield from map(func, iterable) - # Not reached. - iterable = iter(iterable) - executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor] - if use_processpool_executor: - executor_class = ProcessPoolExecutor - else: - executor_class = ThreadPoolExecutor - with executor_class(max_workers=max_workers) as executor: - futures: list[concurrent.futures.Future[Out]] = [] - done = False - for _ in range(concurrency): - try: - futures.append(executor.submit(func, next(iterable))) - except StopIteration: - done = True - break - - while futures: - result = futures.pop(0).result() - while not done and len(futures) < concurrency: - try: - futures.append(executor.submit(func, next(iterable))) - except StopIteration: - done = True - break - yield result - - -def check_vocab_size(params: Params, vocab: BaseVocab, pad_vocab: bool = False) -> None: - # Handle special case where the model's vocab size is not set - if params.n_vocab == -1: - raise ValueError( - "The model's vocab size is set to -1 in params.json. Please update it manually." - + (f" Maybe {vocab.vocab_size}?" if isinstance(vocab, Vocab) else ""), - ) - if not isinstance(vocab, Vocab): - return # model has no vocab - - # Check for a vocab size mismatch - if params.n_vocab == vocab.vocab_size: - logger.warning("Ignoring added_tokens.json since model matches vocab size without it.") - return - - if pad_vocab and params.n_vocab > vocab.vocab_size: - pad_count = params.n_vocab - vocab.vocab_size - logger.debug( - f"Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>" - ) - for i in range(1, pad_count + 1): - vocab.added_tokens_dict[f"<dummy{i:05}>"] = -1 - vocab.added_tokens_list.append(f"<dummy{i:05}>") - vocab.vocab_size = params.n_vocab - return - - msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer} has {vocab.vocab_size})." - if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20: - msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})." - if vocab.vocab_size < params.n_vocab: - msg += " Add the --pad-vocab option and try again." - - raise ValueError(msg) - - -class OutputFile: - def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE): - self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess) - - def add_meta_model(self, params: Params, metadata: Metadata) -> None: - # Metadata About The Model And Its Provenence - name = "LLaMA" - if metadata is not None and metadata.name is not None: - name = metadata.name - elif params.path_model is not None: - name = params.path_model.name - elif params.n_ctx == 4096: - # Heuristic detection of LLaMA v2 model - name = "LLaMA v2" - - self.gguf.add_name(name) - - if metadata is not None: - if metadata.author is not None: - self.gguf.add_author(metadata.author) - if metadata.version is not None: - self.gguf.add_version(metadata.version) - if metadata.url is not None: - self.gguf.add_url(metadata.url) - if metadata.description is not None: - self.gguf.add_description(metadata.description) - if metadata.licence is not None: - self.gguf.add_licence(metadata.licence) - if metadata.source_url is not None: - self.gguf.add_source_url(metadata.source_url) - if metadata.source_hf_repo is not None: - self.gguf.add_source_hf_repo(metadata.source_hf_repo) - - def add_meta_arch(self, params: Params) -> None: - # Metadata About The Neural Architecture Itself - self.gguf.add_vocab_size(params.n_vocab) - self.gguf.add_context_length(params.n_ctx) - self.gguf.add_embedding_length(params.n_embd) - self.gguf.add_block_count(params.n_layer) - self.gguf.add_feed_forward_length(params.n_ff) - self.gguf.add_rope_dimension_count(params.n_embd // params.n_head) - self.gguf.add_head_count (params.n_head) - self.gguf.add_head_count_kv (params.n_head_kv) - - if params.n_experts: - self.gguf.add_expert_count(params.n_experts) - - if params.n_experts_used: - self.gguf.add_expert_used_count(params.n_experts_used) - - if params.f_norm_eps: - self.gguf.add_layer_norm_rms_eps(params.f_norm_eps) - else: - raise ValueError('f_norm_eps is None') - - if params.f_rope_freq_base is not None: - self.gguf.add_rope_freq_base(params.f_rope_freq_base) - - if params.rope_scaling_type: - assert params.f_rope_scale is not None - self.gguf.add_rope_scaling_type(params.rope_scaling_type) - self.gguf.add_rope_scaling_factor(params.f_rope_scale) - - if params.n_ctx_orig is not None: - self.gguf.add_rope_scaling_orig_ctx_len(params.n_ctx_orig) - - if params.rope_finetuned is not None: - self.gguf.add_rope_scaling_finetuned(params.rope_finetuned) - - if params.ftype is not None: - self.gguf.add_file_type(params.ftype) - - def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]: - tokens = [] - scores = [] - toktypes = [] - - # NOTE: `all_tokens` returns the base vocabulary and added tokens - for text, score, toktype in vocab.all_tokens(): - tokens.append(text) - scores.append(score) - toktypes.append(toktype) - - assert len(tokens) == vocab.vocab_size - - return tokens, scores, toktypes - - def add_meta_vocab(self, vocab: Vocab) -> None: - # Ensure that tokenizer_model is added to the GGUF model - self.gguf.add_tokenizer_model(vocab.tokenizer_model) - - # Extract model vocabulary for model conversion - tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab) - - # Add extracted token information for model conversion - self.gguf.add_token_list(tokens) - self.gguf.add_token_scores(scores) - self.gguf.add_token_types(toktypes) - - def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None: - svocab.add_to_gguf(self.gguf) - - def add_tensor_info(self, name: str, tensor: LazyTensor) -> None: - n_elements = int(np.prod(tensor.shape)) - raw_dtype = getattr(tensor.data_type, 'ggml_type', None) - data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype - data_nbytes = tensor.data_type.elements_to_bytes(n_elements) - self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype) - - def write_meta(self) -> None: - self.gguf.write_header_to_file() - self.gguf.write_kv_data_to_file() - - def write_tensor_info(self) -> None: - self.gguf.write_ti_data_to_file() - - def write_tensor_data(self, ftype: GGMLFileType, model: LazyModel, concurrency: int) -> None: - ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency=concurrency) - if ftype == GGMLFileType.MostlyQ8_0: - ndarrays = bounded_parallel_map( - OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency, - use_processpool_executor=True, - ) - else: - ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner) - - start = time.time() - for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): - elapsed = time.time() - start - size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape) - padi = len(str(len(model))) - logger.info( - f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}" - ) - self.gguf.write_tensor_data(ndarray) - - def close(self) -> None: - self.gguf.close() - - @staticmethod - def write_vocab_only( - fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, - endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata = None, - ) -> None: - check_vocab_size(params, vocab, pad_vocab=pad_vocab) - - of = OutputFile(fname_out, endianess=endianess) - - # meta data - of.add_meta_model(params, metadata) - of.add_meta_arch(params) - of.add_meta_vocab(vocab) - of.add_meta_special_vocab(svocab) - - of.write_meta() - - of.close() - - @staticmethod - def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]: - name, lazy_tensor = item - tensor = lazy_tensor.load().to_ggml() - return (lazy_tensor.data_type, tensor.ndarray) - - @staticmethod - def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray: - dt, arr = item - if not isinstance(dt, QuantizedDataType): - return arr - return dt.quantize(arr) - - @staticmethod - def write_all( - fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab, - concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, - pad_vocab: bool = False, - metadata: Metadata = None, - ) -> None: - check_vocab_size(params, vocab, pad_vocab=pad_vocab) - - of = OutputFile(fname_out, endianess=endianess) - - # meta data - of.add_meta_model(params, metadata) - of.add_meta_arch(params) - if isinstance(vocab, Vocab): - of.add_meta_vocab(vocab) - of.add_meta_special_vocab(svocab) - else: # NoVocab - of.gguf.add_tokenizer_model(vocab.tokenizer_model) - - # tensor info - for name, lazy_tensor in model.items(): - of.add_tensor_info(name, lazy_tensor) - - of.write_meta() - of.write_tensor_info() - - # tensor data - of.write_tensor_data(ftype, model, concurrency) - - of.close() - - -def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType: - wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type - - if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)): - return GGMLFileType.AllF32 - if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16): - return GGMLFileType.MostlyF16 - if output_type_str == "q8_0": - return GGMLFileType.MostlyQ8_0 - - name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()} - - raise ValueError(f"Unexpected combination of types: {name_to_type}") - - -def model_parameter_count(model: LazyModel) -> int: - total_model_parameters = 0 - for i, (name, lazy_tensor) in enumerate(model.items()): - sum_weights_in_tensor = 1 - for dim in lazy_tensor.shape: - sum_weights_in_tensor *= dim - total_model_parameters += sum_weights_in_tensor - return total_model_parameters - - -def model_parameter_count_rounded_notation(model_params_count: int) -> str: - if model_params_count > 1e12 : - # Trillions Of Parameters - scaled_model_params = model_params_count * 1e-12 - scale_suffix = "T" - elif model_params_count > 1e9 : - # Billions Of Parameters - scaled_model_params = model_params_count * 1e-9 - scale_suffix = "B" - elif model_params_count > 1e6 : - # Millions Of Parameters - scaled_model_params = model_params_count * 1e-6 - scale_suffix = "M" - else: - # Thousands Of Parameters - scaled_model_params = model_params_count * 1e-3 - scale_suffix = "K" - - return f"{round(scaled_model_params)}{scale_suffix}" - - -def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel: - return {name: tensor.astype(output_type.type_for_tensor(name, tensor)) - for (name, tensor) in model.items()} - - -def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) -> LazyModel: - tmap = gguf.TensorNameMap(ARCH, params.n_layer) - should_skip = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, [])) - - tmp = model - - # merge experts into one tensor - if params.n_experts and params.n_experts > 0: - for i_l in range(params.n_layer): - for w in range(1, 4): - experts = [] - for e in range(params.n_experts): - if f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight" in model: - experts.append(model[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"]) - del tmp[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"] - elif f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight" in model: - experts.append(model[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"]) - del tmp[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"] - else: - raise ValueError(f"Expert tensor not found: layers.{i_l}.feed_forward.experts.{e}.w{w}.weight") - tmp[f"layers.{i_l}.feed_forward.experts.w{w}.weight"] = pack_experts_lazy(experts) - - # HF models permut or pack some of the tensors, so we need to undo that - for i in itertools.count(): - if f"model.layers.{i}.self_attn.q_proj.weight" in model: - logger.debug(f"Permuting layer {i}") - tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head) - tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv) - # tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] - elif f"model.layers.{i}.self_attn.W_pack.weight" in model: - logger.debug(f"Unpacking and permuting layer {i}") - tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head) - tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv) - tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2) - del tmp[f"model.layers.{i}.self_attn.W_pack.weight"] - else: - break - - out: LazyModel = {} - for name, lazy_tensor in model.items(): - tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None) - if name_new is None: - if skip_unknown: - logger.warning(f"Unexpected tensor name: {name} - skipping") - continue - raise ValueError(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)") - - if tensor_type in should_skip: - logger.debug(f"skipping tensor {name_new}") - continue - - logger.debug(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}") - out[name_new] = lazy_tensor - - return out - - -def nth_multifile_path(path: Path, n: int) -> Path | None: - '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return - the nth path in the model. - ''' - # Support the following patterns: - patterns = [ - # - x.00.pth, x.01.pth, etc. - (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'), - # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc. - (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'), - # x.bin, x.bin.1, etc. - (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}') - ] - for regex, replacement in patterns: - if re.search(regex, path.name): - new_path = path.with_name(re.sub(regex, replacement, path.name)) - if new_path.exists(): - return new_path - return None - - -def find_multifile_paths(path: Path) -> list[Path]: - '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return - the whole list of paths in the model. - ''' - ret: list[Path] = [] - for i in itertools.count(): - nth_path = nth_multifile_path(path, i) - if nth_path is None: - break - ret.append(nth_path) - if not ret: - # No matches. This should only happen if the file was named, e.g., - # foo.0, and there was no file named foo. Oh well, try to process it - # as a single file. - return [path] - return ret - - -def load_some_model(path: Path) -> ModelPlus: - '''Load a model of any supported format.''' - # Be extra-friendly and accept either a file or a directory: - if path.is_dir(): - # Check if it's a set of safetensors files first - globs = ["model-00001-of-*.safetensors", "model.safetensors", "consolidated.safetensors"] - files = [file for glob in globs for file in path.glob(glob)] - if not files: - # Try the PyTorch patterns too, with lower priority - globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"] - files = [file for glob in globs for file in path.glob(glob)] - if not files: - raise FileNotFoundError(f"Can't find model in directory {path}") - if len(files) > 1: - raise ValueError(f"Found multiple models in {path}, not sure which to pick: {files}") - path = files[0] - - paths = find_multifile_paths(path) - models_plus: list[ModelPlus] = [] - for path in paths: - logger.info(f"Loading model file {path}") - models_plus.append(lazy_load_file(path)) - - model_plus = merge_multifile_models(models_plus) - return model_plus - - -class VocabFactory: - _VOCAB_CLASSES: list[type[Vocab]] = [SentencePieceVocab, BpeVocab, LlamaHfVocab] - - def __init__(self, path: Path): - self.path = path - - def _create_special_vocab(self, vocab: BaseVocab, model_parent_path: Path) -> gguf.SpecialVocab: - load_merges = vocab.name == "bpe" - n_vocab = vocab.vocab_size if isinstance(vocab, Vocab) else None - return gguf.SpecialVocab( - model_parent_path, - load_merges=load_merges, - special_token_types=None, # Predetermined or passed as a parameter - n_vocab=n_vocab, - ) - - def _create_vocab_by_path(self, vocab_types: list[str]) -> Vocab: - vocab_classes: dict[str, type[Vocab]] = {cls.name: cls for cls in self._VOCAB_CLASSES} - selected_vocabs: dict[str, type[Vocab]] = {} - for vtype in vocab_types: - try: - selected_vocabs[vtype] = vocab_classes[vtype] - except KeyError: - raise ValueError(f"Unsupported vocabulary type {vtype}") from None - - for vtype, cls in selected_vocabs.items(): - try: - vocab = cls(self.path) - break - except FileNotFoundError: - pass # ignore unavailable tokenizers - else: - raise FileNotFoundError(f"Could not find a tokenizer matching any of {vocab_types}") - - logger.info(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}") - return vocab - - def load_vocab(self, vocab_types: list[str] | None, model_parent_path: Path) -> tuple[BaseVocab, gguf.SpecialVocab]: - vocab: BaseVocab - if vocab_types is None: - vocab = NoVocab() - else: - vocab = self._create_vocab_by_path(vocab_types) - # FIXME: Respect --vocab-dir? - special_vocab = self._create_special_vocab( - vocab, - model_parent_path, - ) - return vocab, special_vocab - - -def default_convention_outfile(file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> str: - quantization = { - GGMLFileType.AllF32: "F32", - GGMLFileType.MostlyF16: "F16", - GGMLFileType.MostlyQ8_0: "Q8_0", - }[file_type] - - parameters = model_parameter_count_rounded_notation(model_params_count) - - expert_count = "" - if params.n_experts is not None: - expert_count = f"{params.n_experts}x" - - version = "" - if metadata is not None and metadata.version is not None: - version = f"-{metadata.version}" - - name = "ggml-model" - if metadata is not None and metadata.name is not None: - name = metadata.name - elif params.path_model is not None: - name = params.path_model.name - - return f"{name}{version}-{expert_count}{parameters}-{quantization}" - - -def default_outfile(model_paths: list[Path], file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> Path: - default_filename = default_convention_outfile(file_type, params, model_params_count, metadata) - ret = model_paths[0].parent / f"{default_filename}.gguf" - if ret in model_paths: - logger.error( - f"Error: Default output path ({ret}) would overwrite the input. " - "Please explicitly specify a path using --outfile.") - sys.exit(1) - return ret - - -def do_dump_model(model_plus: ModelPlus) -> None: - print(f"model_plus.paths = {model_plus.paths!r}") # noqa: NP100 - print(f"model_plus.format = {model_plus.format!r}") # noqa: NP100 - print(f"model_plus.vocab = {model_plus.vocab!r}") # noqa: NP100 - for name, lazy_tensor in model_plus.model.items(): - print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") # noqa: NP100 - - -def main(args_in: list[str] | None = None) -> None: - output_choices = ["f32", "f16"] - if np.uint32(1) == np.uint32(1).newbyteorder("<"): - # We currently only support Q8_0 output on little endian systems. - output_choices.append("q8_0") - parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file") - parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") - parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") - parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") - parser.add_argument("--no-vocab", action="store_true", help="store model without the vocab") - parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)") - parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") - parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft") - parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") - parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") - parser.add_argument("--ctx", type=int, help="model training context (default: based on input)") - parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY) - parser.add_argument("--big-endian", action="store_true", help="model is executed on big endian machine") - parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides") - parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing") - parser.add_argument("--verbose", action="store_true", help="increase output verbosity") - parser.add_argument("--metadata", type=Path, help="Specify the path for a metadata file") - parser.add_argument("--get-outfile", action="store_true", help="get calculated default outfile name") - - args = parser.parse_args(args_in) - - if args.verbose: - logging.basicConfig(level=logging.DEBUG) - elif args.dump_single or args.dump or args.get_outfile: - # Avoid printing anything besides the dump output - logging.basicConfig(level=logging.WARNING) - else: - logging.basicConfig(level=logging.INFO) - - metadata = Metadata.load(args.metadata) - - if args.get_outfile: - model_plus = load_some_model(args.model) - params = Params.load(model_plus) - model = convert_model_names(model_plus.model, params, args.skip_unknown) - model_params_count = model_parameter_count(model_plus.model) - ftype = pick_output_type(model, args.outtype) - print(f"{default_convention_outfile(ftype, params, model_params_count, metadata)}") # noqa: NP100 - return - - if args.no_vocab and args.vocab_only: - raise ValueError("--vocab-only does not make sense with --no-vocab") - - if args.dump_single: - model_plus = lazy_load_file(args.model) - do_dump_model(model_plus) - return - - if not args.vocab_only: - model_plus = load_some_model(args.model) - else: - model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None) - - model_params_count = model_parameter_count(model_plus.model) - logger.info(f"model parameters count : {model_params_count} ({model_parameter_count_rounded_notation(model_params_count)})") - - if args.dump: - do_dump_model(model_plus) - return - - endianess = gguf.GGUFEndian.LITTLE - if args.big_endian: - endianess = gguf.GGUFEndian.BIG - - params = None - if args.pad_vocab or not args.vocab_only: - params = Params.load(model_plus) - if params.n_ctx == -1: - if args.ctx is None: - msg = """\ - The model doesn't have a context size, and you didn't specify one with --ctx - Please specify one with --ctx: - - LLaMA v1: --ctx 2048 - - LLaMA v2: --ctx 4096""" - parser.error(textwrap.dedent(msg)) - params.n_ctx = args.ctx - - if args.outtype: - params.ftype = { - "f32": GGMLFileType.AllF32, - "f16": GGMLFileType.MostlyF16, - "q8_0": GGMLFileType.MostlyQ8_0, - }[args.outtype] - - logger.info(f"params = {params}") - - model_parent_path = model_plus.paths[0].parent - vocab_path = Path(args.vocab_dir or args.model or model_parent_path) - vocab_factory = VocabFactory(vocab_path) - vocab_types = None if args.no_vocab else args.vocab_type.split(",") - vocab, special_vocab = vocab_factory.load_vocab(vocab_types, model_parent_path) - - if args.vocab_only: - assert isinstance(vocab, Vocab) - if not args.outfile: - raise ValueError("need --outfile if using --vocab-only") - outfile = args.outfile - if params is None: - params = Params( - n_vocab = vocab.vocab_size, - n_embd = 1, - n_layer = 1, - n_ctx = 1, - n_ff = 1, - n_head = 1, - n_head_kv = 1, - f_norm_eps = 1e-5, - ) - OutputFile.write_vocab_only(outfile, params, vocab, special_vocab, - endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata) - logger.info(f"Wrote {outfile}") - return - - if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab: - vocab = model_plus.vocab - - logger.info(f"Vocab info: {vocab}") - logger.info(f"Special vocab info: {special_vocab}") - model = model_plus.model - model = convert_model_names(model, params, args.skip_unknown) - ftype = pick_output_type(model, args.outtype) - model = convert_to_output_type(model, ftype) - outfile = args.outfile or default_outfile(model_plus.paths, ftype, params, model_params_count, metadata) - - params.ftype = ftype - logger.info(f"Writing {outfile}, format {ftype}") - - OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, - concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata) - logger.info(f"Wrote {outfile}") - - -if __name__ == '__main__': - main() |