summaryrefslogtreecommitdiff
path: root/examples/convert-legacy-llama.py
diff options
context:
space:
mode:
Diffstat (limited to 'examples/convert-legacy-llama.py')
-rwxr-xr-xexamples/convert-legacy-llama.py1416
1 files changed, 0 insertions, 1416 deletions
diff --git a/examples/convert-legacy-llama.py b/examples/convert-legacy-llama.py
deleted file mode 100755
index 721a57c0..00000000
--- a/examples/convert-legacy-llama.py
+++ /dev/null
@@ -1,1416 +0,0 @@
-#!/usr/bin/env python3
-from __future__ import annotations
-
-import logging
-import argparse
-import concurrent.futures
-import enum
-import faulthandler
-import functools
-import itertools
-import json
-import math
-import mmap
-import os
-import pickle
-import re
-import signal
-import struct
-import sys
-import textwrap
-import time
-import zipfile
-from abc import ABC, abstractmethod
-from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
-from dataclasses import dataclass
-from pathlib import Path
-from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar, Optional
-
-import numpy as np
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- # use .parent.parent since we are in "examples" directory
- sys.path.insert(1, str(Path(__file__).parent.parent / 'gguf-py'))
-
-import gguf
-from gguf import BaseVocab, Vocab, NoVocab, BpeVocab, SentencePieceVocab, LlamaHfVocab
-
-if TYPE_CHECKING:
- from typing_extensions import Self, TypeAlias
-
-logger = logging.getLogger("convert")
-
-if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
- faulthandler.register(signal.SIGUSR1)
-
-NDArray: TypeAlias = 'np.ndarray[Any, Any]'
-
-ARCH = gguf.MODEL_ARCH.LLAMA
-
-DEFAULT_CONCURRENCY = 8
-
-ADDED_TOKENS_FILE = 'added_tokens.json'
-FAST_TOKENIZER_FILE = 'tokenizer.json'
-
-#
-# data types
-#
-
-
-@dataclass(frozen=True)
-class DataType:
- name: str
- dtype: np.dtype[Any]
- valid_conversions: list[str]
-
- def elements_to_bytes(self, n_elements: int) -> int:
- return n_elements * self.dtype.itemsize
-
-
-@dataclass(frozen=True)
-class UnquantizedDataType(DataType):
- pass
-
-
-DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
-DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
-DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
-DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
-
-
-@dataclass(frozen=True)
-class QuantizedDataType(DataType):
- block_size: int
- quantized_dtype: np.dtype[Any]
- ggml_type: gguf.GGMLQuantizationType
-
- def quantize(self, arr: NDArray) -> NDArray:
- raise NotImplementedError(f'Quantization for {self.name} not implemented')
-
- def elements_to_bytes(self, n_elements: int) -> int:
- assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
- return self.quantized_dtype.itemsize * (n_elements // self.block_size)
-
-
-@dataclass(frozen=True)
-class Q8_0QuantizedDataType(QuantizedDataType):
- # Mini Q8_0 quantization in Python!
- def quantize(self, arr: NDArray) -> NDArray:
- assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}'
- assert arr.dtype == np.float32, f'Bad array type {arr.dtype}'
- n_blocks = arr.size // self.block_size
- blocks = arr.reshape((n_blocks, self.block_size))
- # Much faster implementation of block quantization contributed by @Cebtenzzre
-
- def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
- d = abs(blocks).max(axis = 1) / np.float32(127)
- with np.errstate(divide = 'ignore'):
- qs = (blocks / d[:, None]).round()
- qs[d == 0] = 0
- yield from zip(d, qs)
- return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
-
-
-DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
- dtype = np.dtype(np.float32), valid_conversions = [],
- ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
- quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
-
-# Quantized types skipped here because they may also map to np.float32
-NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
-for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
- if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
- raise ValueError(f'Invalid duplicate data type {dt}')
- NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt
-
-SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
- 'BF16': DT_BF16,
- 'F16': DT_F16,
- 'F32': DT_F32,
- 'I32': DT_I32,
-}
-
-# TODO: match this with `llama_ftype`
-# TODO: rename to LLAMAFileType
-# TODO: move to `gguf.py`
-
-
-class GGMLFileType(enum.IntEnum):
- AllF32 = 0
- MostlyF16 = 1 # except 1d tensors
- MostlyQ8_0 = 7 # except 1d tensors
-
- def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType:
- dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
- if dt is None:
- raise ValueError(self)
- # Convert all 1D tensors to F32. Most of the codebase that takes in 1D tensors only handles F32 tensors, and most of the outputs tensors are F32.
- # Also The 1d tensors aren't much of a performance/size issue. So instead of having to have separate F32 and F16 implementations of both, just convert everything to F32 for now.
- return dt if len(tensor.shape) > 1 else DT_F32
-
-
-GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
- GGMLFileType.AllF32 : DT_F32,
- GGMLFileType.MostlyF16 : DT_F16,
- GGMLFileType.MostlyQ8_0: DT_Q8_0,
-}
-
-#
-# hparams loading
-#
-
-
-@dataclass
-class Params:
- n_vocab: int
- n_embd: int
- n_layer: int
- n_ctx: int
- n_ff: int
- n_head: int
- n_head_kv: int
- n_experts: int | None = None
- n_experts_used: int | None = None
- f_norm_eps: float | None = None
-
- rope_scaling_type: gguf.RopeScalingType | None = None
- f_rope_freq_base: float | None = None
- f_rope_scale: float | None = None
- n_ctx_orig: int | None = None
- rope_finetuned: bool | None = None
-
- ftype: GGMLFileType | None = None
-
- # path to the directory containing the model files
- path_model: Path | None = None
-
- @staticmethod
- def guessed(model: LazyModel) -> Params:
- # try transformer naming first
- n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
-
- # try transformer naming first
- if "model.layers.0.self_attn.q_proj.weight" in model:
- n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
- elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
- n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
- else:
- n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
-
- if n_layer < 1:
- msg = """\
- failed to guess 'n_layer'. This model is unknown or unsupported.
- Suggestion: provide 'config.json' of the model in the same directory containing model files."""
- raise KeyError(textwrap.dedent(msg))
-
- n_head = n_embd // 128 # guessed
- n_mult = 256 # guessed
-
- # TODO: verify this
- n_ff = int(2 * (4 * n_embd) / 3)
- n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult)
-
- return Params(
- n_vocab = n_vocab,
- n_embd = n_embd,
- n_layer = n_layer,
- n_ctx = -1,
- n_ff = n_ff,
- n_head = n_head,
- n_head_kv = n_head,
- f_norm_eps = 1e-5,
- )
-
- @staticmethod
- def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
- with open(config_path) as f:
- config = json.load(f)
-
- rope_scaling_type = f_rope_scale = n_ctx_orig = rope_finetuned = None
- rope_scaling = config.get("rope_scaling")
-
- if rope_scaling is not None and (typ := rope_scaling.get("type")):
- rope_factor = rope_scaling.get("factor")
- f_rope_scale = rope_factor
- if typ == "linear":
- rope_scaling_type = gguf.RopeScalingType.LINEAR
- elif typ == "yarn":
- rope_scaling_type = gguf.RopeScalingType.YARN
- n_ctx_orig = rope_scaling['original_max_position_embeddings']
- rope_finetuned = rope_scaling['finetuned']
- else:
- raise NotImplementedError(f'Unknown rope scaling type: {typ}')
-
- if "max_sequence_length" in config:
- n_ctx = config["max_sequence_length"]
- elif "max_position_embeddings" in config:
- n_ctx = config["max_position_embeddings"]
- else:
- msg = """\
- failed to guess 'n_ctx'. This model is unknown or unsupported.
- Suggestion: provide 'config.json' of the model in the same directory containing model files."""
- raise KeyError(textwrap.dedent(msg))
-
- n_experts = None
- n_experts_used = None
-
- if "num_local_experts" in config:
- n_experts = config["num_local_experts"]
- n_experts_used = config["num_experts_per_tok"]
-
- return Params(
- n_vocab = config["vocab_size"],
- n_embd = config["hidden_size"],
- n_layer = config["num_hidden_layers"],
- n_ctx = n_ctx,
- n_ff = config["intermediate_size"],
- n_head = (n_head := config["num_attention_heads"]),
- n_head_kv = config.get("num_key_value_heads", n_head),
- n_experts = n_experts,
- n_experts_used = n_experts_used,
- f_norm_eps = config["rms_norm_eps"],
- f_rope_freq_base = config.get("rope_theta"),
- rope_scaling_type = rope_scaling_type,
- f_rope_scale = f_rope_scale,
- n_ctx_orig = n_ctx_orig,
- rope_finetuned = rope_finetuned,
- )
-
- # LLaMA v2 70B params.json
- # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
- @staticmethod
- def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
- with open(config_path) as f:
- config = json.load(f)
-
- n_experts = None
- n_experts_used = None
- f_rope_freq_base = None
- n_ff = None
-
- # hack to determine LLaMA v1 vs v2 vs CodeLlama
- if config.get("moe"):
- # Mixtral
- n_ctx = 32768
- elif config.get("rope_theta") == 1000000:
- # CodeLlama
- n_ctx = 16384
- elif config["norm_eps"] == 1e-05:
- # LLaMA v2
- n_ctx = 4096
- else:
- # LLaMA v1
- n_ctx = 2048
-
- if "layers.0.feed_forward.w1.weight" in model:
- n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
-
- if config.get("moe"):
- n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0]
- n_experts = config["moe"]["num_experts"]
- n_experts_used = config["moe"]["num_experts_per_tok"]
- f_rope_freq_base = 1e6
-
- assert n_ff is not None
-
- return Params(
- n_vocab = model["tok_embeddings.weight"].shape[0],
- n_embd = config["dim"],
- n_layer = config["n_layers"],
- n_ctx = n_ctx,
- n_ff = n_ff,
- n_head = (n_head := config["n_heads"]),
- n_head_kv = config.get("n_kv_heads", n_head),
- n_experts = n_experts,
- n_experts_used = n_experts_used,
- f_norm_eps = config["norm_eps"],
- f_rope_freq_base = config.get("rope_theta", f_rope_freq_base),
- )
-
- @staticmethod
- def load(model_plus: ModelPlus) -> Params:
- hf_config_path = model_plus.paths[0].parent / "config.json"
- orig_config_path = model_plus.paths[0].parent / "params.json"
-
- if hf_config_path.exists():
- params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
- elif orig_config_path.exists():
- params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
- elif model_plus.format != 'none':
- params = Params.guessed(model_plus.model)
- else:
- raise ValueError('Cannot guess params when model format is none')
-
- params.path_model = model_plus.paths[0].parent
-
- return params
-
-
-@dataclass
-class Metadata:
- name: Optional[str] = None
- author: Optional[str] = None
- version: Optional[str] = None
- url: Optional[str] = None
- description: Optional[str] = None
- licence: Optional[str] = None
- source_url: Optional[str] = None
- source_hf_repo: Optional[str] = None
-
- @staticmethod
- def load(metadata_path: Path) -> Metadata:
- if metadata_path is None or not metadata_path.exists():
- return Metadata()
-
- with open(metadata_path, 'r') as file:
- data = json.load(file)
-
- # Create a new Metadata instance
- metadata = Metadata()
-
- # Assigning values to Metadata attributes if they exist in the JSON file
- # This is based on LLM_KV_NAMES mapping in llama.cpp
- metadata.name = data.get("general.name")
- metadata.author = data.get("general.author")
- metadata.version = data.get("general.version")
- metadata.url = data.get("general.url")
- metadata.description = data.get("general.description")
- metadata.license = data.get("general.license")
- metadata.source_url = data.get("general.source.url")
- metadata.source_hf_repo = data.get("general.source.huggingface.repository")
-
- return metadata
-
-
-#
-# data loading
-# TODO: reuse (probably move to gguf.py?)
-#
-
-
-def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
- if n_head_kv is not None and n_head != n_head_kv:
- n_head = n_head_kv
- return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape))
-
-
-class Tensor(ABC):
- ndarray: NDArray
- data_type: DataType
-
- @abstractmethod
- def astype(self, data_type: DataType) -> Self: ...
- @abstractmethod
- def permute(self, n_head: int, n_head_kv: int) -> Self: ...
- @abstractmethod
- def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> Self: ...
- @abstractmethod
- def part(self, n_part: int) -> Self: ...
- @abstractmethod
- def to_ggml(self) -> GGMLCompatibleTensor: ...
-
-
-def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
- assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
- fp32_arr = bf16_arr.astype(np.uint32) << 16
- return fp32_arr.view(np.float32)
-
-
-class UnquantizedTensor(Tensor):
- def __init__(self, ndarray: NDArray):
- assert isinstance(ndarray, np.ndarray)
- self.ndarray = ndarray
- self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
-
- def astype(self, data_type: DataType) -> UnquantizedTensor:
- dtype = data_type.dtype
- if self.data_type == DT_BF16:
- self.ndarray = bf16_to_fp32(self.ndarray)
- return UnquantizedTensor(self.ndarray.astype(dtype))
-
- def to_ggml(self) -> Self:
- return self
-
- def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
- r = self.ndarray.shape[0] // 3
- return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
-
- def part(self, n_part: int) -> UnquantizedTensor:
- r = self.ndarray.shape[0] // 3
- return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
-
- def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor:
- return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))
-
-
-def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray:
- tensor = lazy_tensor.load()
- assert isinstance(tensor, UnquantizedTensor)
-
- # double-check:
- actual_shape = list(tensor.ndarray.shape)
- assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
- if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
- if convert:
- tensor.ndarray = tensor.ndarray.astype(expected_dtype)
- else:
- raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
-
- return tensor.ndarray
-
-
-GGMLCompatibleTensor = UnquantizedTensor
-
-
-@dataclass
-class LazyTensor:
- _load: Callable[[], Tensor]
- shape: list[int]
- data_type: DataType
- description: str
-
- def load(self) -> Tensor:
- ret = self._load()
- # Should be okay if it maps to the same numpy type?
- assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
- (self.data_type, ret.data_type, self.description)
- return ret
-
- def astype(self, data_type: DataType) -> LazyTensor:
- self.validate_conversion_to(data_type)
-
- def load() -> Tensor:
- return self.load().astype(data_type)
- return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
-
- def validate_conversion_to(self, data_type: DataType) -> None:
- if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions:
- raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
-
-
-LazyModel: TypeAlias = 'dict[str, LazyTensor]'
-
-
-@dataclass
-class ModelPlus:
- model: LazyModel
- paths: list[Path] # Where this was read from.
- format: Literal['ggml', 'torch', 'safetensors', 'none']
- vocab: BaseVocab | None # For GGML models (which have vocab built in), the vocab.
-
-
-def merge_sharded(models: list[LazyModel]) -> LazyModel:
- # Original LLaMA models have each file contain one part of each tensor.
- # Use a dict instead of a set to preserve order.
- names = {name: None for model in models for name in model}
-
- def convert(name: str) -> LazyTensor:
- lazy_tensors = [model[name] for model in models]
- if len(lazy_tensors) == 1:
- # only one file; don't go through this procedure since there might
- # be quantized tensors
- return lazy_tensors[0]
- if len(lazy_tensors[0].shape) == 1:
- # the tensor is just duplicated in every file
- return lazy_tensors[0]
- if name.startswith('tok_embeddings.') or \
- name.endswith('.attention.wo.weight') or \
- name.endswith('.feed_forward.w2.weight'):
- # split by columns
- axis = 1
- else:
- # split by rows
- axis = 0
- concatenated_shape = list(lazy_tensors[0].shape)
- concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
-
- def load() -> UnquantizedTensor:
- ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
- concatenated = np.concatenate(ndarrays, axis=axis)
- return UnquantizedTensor(concatenated)
- description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
- return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
- return {name: convert(name) for name in names}
-
-
-def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
- formats = set(mp.format for mp in models_plus)
- assert len(formats) == 1, "different formats?"
- format = formats.pop()
- paths = [path for mp in models_plus for path in mp.paths]
- # Use the first non-None vocab, if any.
- try:
- vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
- except StopIteration:
- vocab = None
-
- if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
- # Transformers models put different tensors in different files, but
- # don't split individual tensors between files.
- model: LazyModel = {}
- for mp in models_plus:
- model.update(mp.model)
- else:
- model = merge_sharded([mp.model for mp in models_plus])
-
- return ModelPlus(model, paths, format, vocab) # pytype: disable=wrong-arg-types
-
-
-def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
- def load() -> Tensor:
- return lazy_tensor.load().permute(n_head, n_head_kv)
- return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
-
-
-def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
- def load() -> Tensor:
- return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
- s = lazy_tensor.shape.copy()
- s[0] = s[0] // 3
- return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
-
-
-def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
- def load() -> Tensor:
- return lazy_tensor.load().part(n_part)
- s = lazy_tensor.shape.copy()
- s[0] = s[0] // 3
- return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
-
-
-def pack_experts_lazy(lazy_tensors: list[LazyTensor]) -> LazyTensor:
- def load() -> Tensor:
- tensors = [lazy_tensor.load() for lazy_tensor in lazy_tensors]
- return UnquantizedTensor(np.array([tensor.ndarray for tensor in tensors]))
- s = lazy_tensors[0].shape.copy()
- s.insert(0, len(lazy_tensors))
- return LazyTensor(load, s, lazy_tensors[0].data_type, 'pack_experts ' + ' | '.join(lt.description for lt in lazy_tensors))
-
-
-# Functionality that simulates `torch.load` but where individual tensors are
-# only loaded into memory on demand, not all at once.
-# PyTorch can't do this natively as of time of writing:
-# - https://github.com/pytorch/pytorch/issues/64327
-# This allows us to de-shard without multiplying RAM usage, and also
-# conveniently drops the PyTorch dependency (though we still need numpy).
-
-
-@dataclass
-class LazyStorageKind:
- data_type: DataType
-
-
-@dataclass
-class LazyStorage:
- load: Callable[[int, int], NDArray]
- kind: LazyStorageKind
- description: str
-
-
-class LazyUnpickler(pickle.Unpickler):
- def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
- super().__init__(fp)
- self.data_base_path = data_base_path
- self.zip_file = zip_file
-
- def persistent_load(self, pid: Any) -> Any:
- assert pid[0] == 'storage'
- assert isinstance(pid[1], LazyStorageKind)
- data_type = pid[1].data_type
- filename_stem = pid[2]
- filename = f'{self.data_base_path}/{filename_stem}'
- info = self.zip_file.getinfo(filename)
-
- def load(offset: int, elm_count: int) -> NDArray:
- dtype = data_type.dtype
- with self.zip_file.open(info) as fp:
- fp.seek(offset * dtype.itemsize)
- size = elm_count * dtype.itemsize
- data = fp.read(size)
- assert len(data) == size
- return np.frombuffer(data, dtype)
- description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
- return LazyStorage(load=load, kind=pid[1], description=description)
-
- @staticmethod
- def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
- requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
- assert isinstance(storage, LazyStorage)
-
- def load() -> UnquantizedTensor:
- elm_count = stride[0] * size[0]
- return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
- description = f'pickled storage_offset={storage_offset} in {storage.description}'
- return LazyTensor(load, list(size), storage.kind.data_type, description)
-
- @staticmethod
- def rebuild_from_type_v2(func, new_type, args, state):
- return func(*args)
-
- CLASSES: dict[tuple[str, str], type[LazyTensor] | LazyStorageKind] = {
- # getattr used here as a workaround for mypy not being smart enough to determine
- # the staticmethods have a __func__ attribute.
- ('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
- ('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
- ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
- ('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
- ('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
- ('torch', 'IntStorage'): LazyStorageKind(DT_I32),
- ('torch', 'Tensor'): LazyTensor,
- }
-
- def find_class(self, module: str, name: str) -> Any:
- if not module.startswith('torch'):
- return super().find_class(module, name)
- return self.CLASSES[(module, name)]
-
-
-def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
- zf = zipfile.ZipFile(outer_fp)
- pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
- assert len(pickle_paths) == 1, pickle_paths
- pickle_fp = zf.open(pickle_paths[0], 'r')
- unpickler = LazyUnpickler(pickle_fp,
- data_base_path=pickle_paths[0][:-4],
- zip_file=zf)
- model = unpickler.load()
- if 'model' in model: model = model['model']
- as_dict = dict(model.items())
- return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
-
-
-def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
- header_size, = struct.unpack('<Q', fp.read(8))
- header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size))
- # Use mmap for the actual data to avoid race conditions with the file offset.
- mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
- byte_buf = mapped[8 + header_size:]
-
- def convert(info: dict[str, Any]) -> LazyTensor:
- data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
- numpy_dtype = data_type.dtype
- shape: list[int] = info['shape']
- begin, end = info['data_offsets']
- assert 0 <= begin <= end <= len(byte_buf)
- assert end - begin == math.prod(shape) * numpy_dtype.itemsize
- buf = byte_buf[begin:end]
-
- def load() -> UnquantizedTensor:
- return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
- description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
- return LazyTensor(load, shape, data_type, description)
- model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
- return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
-
-
-def must_read(fp: IO[bytes], length: int) -> bytes:
- ret = fp.read(length)
- if len(ret) < length:
- raise EOFError("unexpectedly reached end of file")
- return ret
-
-
-@functools.lru_cache(maxsize=None)
-def lazy_load_file(path: Path) -> ModelPlus:
- fp = open(path, 'rb')
- first8 = fp.read(8)
- fp.seek(0)
- if first8[:2] == b'PK':
- # A zip file, i.e. PyTorch format
- return lazy_load_torch_file(fp, path)
- elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
- # Probably safetensors
- return lazy_load_safetensors_file(fp, path)
- else:
- raise ValueError(f"unknown format: {path}")
-
-
-In = TypeVar('In')
-Out = TypeVar('Out')
-
-
-def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
- '''Parallel map, but with backpressure. If the caller doesn't call `next`
- fast enough, this will stop calling `func` at some point rather than
- letting results pile up in memory. Specifically, there is a max of one
- output value buffered per thread.'''
- if concurrency < 2:
- yield from map(func, iterable)
- # Not reached.
- iterable = iter(iterable)
- executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor]
- if use_processpool_executor:
- executor_class = ProcessPoolExecutor
- else:
- executor_class = ThreadPoolExecutor
- with executor_class(max_workers=max_workers) as executor:
- futures: list[concurrent.futures.Future[Out]] = []
- done = False
- for _ in range(concurrency):
- try:
- futures.append(executor.submit(func, next(iterable)))
- except StopIteration:
- done = True
- break
-
- while futures:
- result = futures.pop(0).result()
- while not done and len(futures) < concurrency:
- try:
- futures.append(executor.submit(func, next(iterable)))
- except StopIteration:
- done = True
- break
- yield result
-
-
-def check_vocab_size(params: Params, vocab: BaseVocab, pad_vocab: bool = False) -> None:
- # Handle special case where the model's vocab size is not set
- if params.n_vocab == -1:
- raise ValueError(
- "The model's vocab size is set to -1 in params.json. Please update it manually."
- + (f" Maybe {vocab.vocab_size}?" if isinstance(vocab, Vocab) else ""),
- )
- if not isinstance(vocab, Vocab):
- return # model has no vocab
-
- # Check for a vocab size mismatch
- if params.n_vocab == vocab.vocab_size:
- logger.warning("Ignoring added_tokens.json since model matches vocab size without it.")
- return
-
- if pad_vocab and params.n_vocab > vocab.vocab_size:
- pad_count = params.n_vocab - vocab.vocab_size
- logger.debug(
- f"Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>"
- )
- for i in range(1, pad_count + 1):
- vocab.added_tokens_dict[f"<dummy{i:05}>"] = -1
- vocab.added_tokens_list.append(f"<dummy{i:05}>")
- vocab.vocab_size = params.n_vocab
- return
-
- msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer} has {vocab.vocab_size})."
- if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20:
- msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
- if vocab.vocab_size < params.n_vocab:
- msg += " Add the --pad-vocab option and try again."
-
- raise ValueError(msg)
-
-
-class OutputFile:
- def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE):
- self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
-
- def add_meta_model(self, params: Params, metadata: Metadata) -> None:
- # Metadata About The Model And Its Provenence
- name = "LLaMA"
- if metadata is not None and metadata.name is not None:
- name = metadata.name
- elif params.path_model is not None:
- name = params.path_model.name
- elif params.n_ctx == 4096:
- # Heuristic detection of LLaMA v2 model
- name = "LLaMA v2"
-
- self.gguf.add_name(name)
-
- if metadata is not None:
- if metadata.author is not None:
- self.gguf.add_author(metadata.author)
- if metadata.version is not None:
- self.gguf.add_version(metadata.version)
- if metadata.url is not None:
- self.gguf.add_url(metadata.url)
- if metadata.description is not None:
- self.gguf.add_description(metadata.description)
- if metadata.licence is not None:
- self.gguf.add_licence(metadata.licence)
- if metadata.source_url is not None:
- self.gguf.add_source_url(metadata.source_url)
- if metadata.source_hf_repo is not None:
- self.gguf.add_source_hf_repo(metadata.source_hf_repo)
-
- def add_meta_arch(self, params: Params) -> None:
- # Metadata About The Neural Architecture Itself
- self.gguf.add_vocab_size(params.n_vocab)
- self.gguf.add_context_length(params.n_ctx)
- self.gguf.add_embedding_length(params.n_embd)
- self.gguf.add_block_count(params.n_layer)
- self.gguf.add_feed_forward_length(params.n_ff)
- self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
- self.gguf.add_head_count (params.n_head)
- self.gguf.add_head_count_kv (params.n_head_kv)
-
- if params.n_experts:
- self.gguf.add_expert_count(params.n_experts)
-
- if params.n_experts_used:
- self.gguf.add_expert_used_count(params.n_experts_used)
-
- if params.f_norm_eps:
- self.gguf.add_layer_norm_rms_eps(params.f_norm_eps)
- else:
- raise ValueError('f_norm_eps is None')
-
- if params.f_rope_freq_base is not None:
- self.gguf.add_rope_freq_base(params.f_rope_freq_base)
-
- if params.rope_scaling_type:
- assert params.f_rope_scale is not None
- self.gguf.add_rope_scaling_type(params.rope_scaling_type)
- self.gguf.add_rope_scaling_factor(params.f_rope_scale)
-
- if params.n_ctx_orig is not None:
- self.gguf.add_rope_scaling_orig_ctx_len(params.n_ctx_orig)
-
- if params.rope_finetuned is not None:
- self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)
-
- if params.ftype is not None:
- self.gguf.add_file_type(params.ftype)
-
- def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]:
- tokens = []
- scores = []
- toktypes = []
-
- # NOTE: `all_tokens` returns the base vocabulary and added tokens
- for text, score, toktype in vocab.all_tokens():
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
-
- assert len(tokens) == vocab.vocab_size
-
- return tokens, scores, toktypes
-
- def add_meta_vocab(self, vocab: Vocab) -> None:
- # Ensure that tokenizer_model is added to the GGUF model
- self.gguf.add_tokenizer_model(vocab.tokenizer_model)
-
- # Extract model vocabulary for model conversion
- tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab)
-
- # Add extracted token information for model conversion
- self.gguf.add_token_list(tokens)
- self.gguf.add_token_scores(scores)
- self.gguf.add_token_types(toktypes)
-
- def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None:
- svocab.add_to_gguf(self.gguf)
-
- def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
- n_elements = int(np.prod(tensor.shape))
- raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
- data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
- data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
- self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype)
-
- def write_meta(self) -> None:
- self.gguf.write_header_to_file()
- self.gguf.write_kv_data_to_file()
-
- def write_tensor_info(self) -> None:
- self.gguf.write_ti_data_to_file()
-
- def write_tensor_data(self, ftype: GGMLFileType, model: LazyModel, concurrency: int) -> None:
- ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency=concurrency)
- if ftype == GGMLFileType.MostlyQ8_0:
- ndarrays = bounded_parallel_map(
- OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency,
- use_processpool_executor=True,
- )
- else:
- ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
-
- start = time.time()
- for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
- elapsed = time.time() - start
- size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
- padi = len(str(len(model)))
- logger.info(
- f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
- )
- self.gguf.write_tensor_data(ndarray)
-
- def close(self) -> None:
- self.gguf.close()
-
- @staticmethod
- def write_vocab_only(
- fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
- endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata = None,
- ) -> None:
- check_vocab_size(params, vocab, pad_vocab=pad_vocab)
-
- of = OutputFile(fname_out, endianess=endianess)
-
- # meta data
- of.add_meta_model(params, metadata)
- of.add_meta_arch(params)
- of.add_meta_vocab(vocab)
- of.add_meta_special_vocab(svocab)
-
- of.write_meta()
-
- of.close()
-
- @staticmethod
- def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]:
- name, lazy_tensor = item
- tensor = lazy_tensor.load().to_ggml()
- return (lazy_tensor.data_type, tensor.ndarray)
-
- @staticmethod
- def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray:
- dt, arr = item
- if not isinstance(dt, QuantizedDataType):
- return arr
- return dt.quantize(arr)
-
- @staticmethod
- def write_all(
- fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab,
- concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
- pad_vocab: bool = False,
- metadata: Metadata = None,
- ) -> None:
- check_vocab_size(params, vocab, pad_vocab=pad_vocab)
-
- of = OutputFile(fname_out, endianess=endianess)
-
- # meta data
- of.add_meta_model(params, metadata)
- of.add_meta_arch(params)
- if isinstance(vocab, Vocab):
- of.add_meta_vocab(vocab)
- of.add_meta_special_vocab(svocab)
- else: # NoVocab
- of.gguf.add_tokenizer_model(vocab.tokenizer_model)
-
- # tensor info
- for name, lazy_tensor in model.items():
- of.add_tensor_info(name, lazy_tensor)
-
- of.write_meta()
- of.write_tensor_info()
-
- # tensor data
- of.write_tensor_data(ftype, model, concurrency)
-
- of.close()
-
-
-def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
- wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type
-
- if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
- return GGMLFileType.AllF32
- if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
- return GGMLFileType.MostlyF16
- if output_type_str == "q8_0":
- return GGMLFileType.MostlyQ8_0
-
- name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
-
- raise ValueError(f"Unexpected combination of types: {name_to_type}")
-
-
-def model_parameter_count(model: LazyModel) -> int:
- total_model_parameters = 0
- for i, (name, lazy_tensor) in enumerate(model.items()):
- sum_weights_in_tensor = 1
- for dim in lazy_tensor.shape:
- sum_weights_in_tensor *= dim
- total_model_parameters += sum_weights_in_tensor
- return total_model_parameters
-
-
-def model_parameter_count_rounded_notation(model_params_count: int) -> str:
- if model_params_count > 1e12 :
- # Trillions Of Parameters
- scaled_model_params = model_params_count * 1e-12
- scale_suffix = "T"
- elif model_params_count > 1e9 :
- # Billions Of Parameters
- scaled_model_params = model_params_count * 1e-9
- scale_suffix = "B"
- elif model_params_count > 1e6 :
- # Millions Of Parameters
- scaled_model_params = model_params_count * 1e-6
- scale_suffix = "M"
- else:
- # Thousands Of Parameters
- scaled_model_params = model_params_count * 1e-3
- scale_suffix = "K"
-
- return f"{round(scaled_model_params)}{scale_suffix}"
-
-
-def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
- return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
- for (name, tensor) in model.items()}
-
-
-def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) -> LazyModel:
- tmap = gguf.TensorNameMap(ARCH, params.n_layer)
- should_skip = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
-
- tmp = model
-
- # merge experts into one tensor
- if params.n_experts and params.n_experts > 0:
- for i_l in range(params.n_layer):
- for w in range(1, 4):
- experts = []
- for e in range(params.n_experts):
- if f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight" in model:
- experts.append(model[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"])
- del tmp[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"]
- elif f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight" in model:
- experts.append(model[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"])
- del tmp[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"]
- else:
- raise ValueError(f"Expert tensor not found: layers.{i_l}.feed_forward.experts.{e}.w{w}.weight")
- tmp[f"layers.{i_l}.feed_forward.experts.w{w}.weight"] = pack_experts_lazy(experts)
-
- # HF models permut or pack some of the tensors, so we need to undo that
- for i in itertools.count():
- if f"model.layers.{i}.self_attn.q_proj.weight" in model:
- logger.debug(f"Permuting layer {i}")
- tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
- tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
- # tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
- elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
- logger.debug(f"Unpacking and permuting layer {i}")
- tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
- tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
- tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
- del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
- else:
- break
-
- out: LazyModel = {}
- for name, lazy_tensor in model.items():
- tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
- if name_new is None:
- if skip_unknown:
- logger.warning(f"Unexpected tensor name: {name} - skipping")
- continue
- raise ValueError(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)")
-
- if tensor_type in should_skip:
- logger.debug(f"skipping tensor {name_new}")
- continue
-
- logger.debug(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
- out[name_new] = lazy_tensor
-
- return out
-
-
-def nth_multifile_path(path: Path, n: int) -> Path | None:
- '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
- the nth path in the model.
- '''
- # Support the following patterns:
- patterns = [
- # - x.00.pth, x.01.pth, etc.
- (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
- # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
- (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
- # x.bin, x.bin.1, etc.
- (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
- ]
- for regex, replacement in patterns:
- if re.search(regex, path.name):
- new_path = path.with_name(re.sub(regex, replacement, path.name))
- if new_path.exists():
- return new_path
- return None
-
-
-def find_multifile_paths(path: Path) -> list[Path]:
- '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
- the whole list of paths in the model.
- '''
- ret: list[Path] = []
- for i in itertools.count():
- nth_path = nth_multifile_path(path, i)
- if nth_path is None:
- break
- ret.append(nth_path)
- if not ret:
- # No matches. This should only happen if the file was named, e.g.,
- # foo.0, and there was no file named foo. Oh well, try to process it
- # as a single file.
- return [path]
- return ret
-
-
-def load_some_model(path: Path) -> ModelPlus:
- '''Load a model of any supported format.'''
- # Be extra-friendly and accept either a file or a directory:
- if path.is_dir():
- # Check if it's a set of safetensors files first
- globs = ["model-00001-of-*.safetensors", "model.safetensors", "consolidated.safetensors"]
- files = [file for glob in globs for file in path.glob(glob)]
- if not files:
- # Try the PyTorch patterns too, with lower priority
- globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
- files = [file for glob in globs for file in path.glob(glob)]
- if not files:
- raise FileNotFoundError(f"Can't find model in directory {path}")
- if len(files) > 1:
- raise ValueError(f"Found multiple models in {path}, not sure which to pick: {files}")
- path = files[0]
-
- paths = find_multifile_paths(path)
- models_plus: list[ModelPlus] = []
- for path in paths:
- logger.info(f"Loading model file {path}")
- models_plus.append(lazy_load_file(path))
-
- model_plus = merge_multifile_models(models_plus)
- return model_plus
-
-
-class VocabFactory:
- _VOCAB_CLASSES: list[type[Vocab]] = [SentencePieceVocab, BpeVocab, LlamaHfVocab]
-
- def __init__(self, path: Path):
- self.path = path
-
- def _create_special_vocab(self, vocab: BaseVocab, model_parent_path: Path) -> gguf.SpecialVocab:
- load_merges = vocab.name == "bpe"
- n_vocab = vocab.vocab_size if isinstance(vocab, Vocab) else None
- return gguf.SpecialVocab(
- model_parent_path,
- load_merges=load_merges,
- special_token_types=None, # Predetermined or passed as a parameter
- n_vocab=n_vocab,
- )
-
- def _create_vocab_by_path(self, vocab_types: list[str]) -> Vocab:
- vocab_classes: dict[str, type[Vocab]] = {cls.name: cls for cls in self._VOCAB_CLASSES}
- selected_vocabs: dict[str, type[Vocab]] = {}
- for vtype in vocab_types:
- try:
- selected_vocabs[vtype] = vocab_classes[vtype]
- except KeyError:
- raise ValueError(f"Unsupported vocabulary type {vtype}") from None
-
- for vtype, cls in selected_vocabs.items():
- try:
- vocab = cls(self.path)
- break
- except FileNotFoundError:
- pass # ignore unavailable tokenizers
- else:
- raise FileNotFoundError(f"Could not find a tokenizer matching any of {vocab_types}")
-
- logger.info(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}")
- return vocab
-
- def load_vocab(self, vocab_types: list[str] | None, model_parent_path: Path) -> tuple[BaseVocab, gguf.SpecialVocab]:
- vocab: BaseVocab
- if vocab_types is None:
- vocab = NoVocab()
- else:
- vocab = self._create_vocab_by_path(vocab_types)
- # FIXME: Respect --vocab-dir?
- special_vocab = self._create_special_vocab(
- vocab,
- model_parent_path,
- )
- return vocab, special_vocab
-
-
-def default_convention_outfile(file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> str:
- quantization = {
- GGMLFileType.AllF32: "F32",
- GGMLFileType.MostlyF16: "F16",
- GGMLFileType.MostlyQ8_0: "Q8_0",
- }[file_type]
-
- parameters = model_parameter_count_rounded_notation(model_params_count)
-
- expert_count = ""
- if params.n_experts is not None:
- expert_count = f"{params.n_experts}x"
-
- version = ""
- if metadata is not None and metadata.version is not None:
- version = f"-{metadata.version}"
-
- name = "ggml-model"
- if metadata is not None and metadata.name is not None:
- name = metadata.name
- elif params.path_model is not None:
- name = params.path_model.name
-
- return f"{name}{version}-{expert_count}{parameters}-{quantization}"
-
-
-def default_outfile(model_paths: list[Path], file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> Path:
- default_filename = default_convention_outfile(file_type, params, model_params_count, metadata)
- ret = model_paths[0].parent / f"{default_filename}.gguf"
- if ret in model_paths:
- logger.error(
- f"Error: Default output path ({ret}) would overwrite the input. "
- "Please explicitly specify a path using --outfile.")
- sys.exit(1)
- return ret
-
-
-def do_dump_model(model_plus: ModelPlus) -> None:
- print(f"model_plus.paths = {model_plus.paths!r}") # noqa: NP100
- print(f"model_plus.format = {model_plus.format!r}") # noqa: NP100
- print(f"model_plus.vocab = {model_plus.vocab!r}") # noqa: NP100
- for name, lazy_tensor in model_plus.model.items():
- print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") # noqa: NP100
-
-
-def main(args_in: list[str] | None = None) -> None:
- output_choices = ["f32", "f16"]
- if np.uint32(1) == np.uint32(1).newbyteorder("<"):
- # We currently only support Q8_0 output on little endian systems.
- output_choices.append("q8_0")
- parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file")
- parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
- parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
- parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
- parser.add_argument("--no-vocab", action="store_true", help="store model without the vocab")
- parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
- parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
- parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft")
- parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
- parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
- parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
- parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY)
- parser.add_argument("--big-endian", action="store_true", help="model is executed on big endian machine")
- parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
- parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
- parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
- parser.add_argument("--metadata", type=Path, help="Specify the path for a metadata file")
- parser.add_argument("--get-outfile", action="store_true", help="get calculated default outfile name")
-
- args = parser.parse_args(args_in)
-
- if args.verbose:
- logging.basicConfig(level=logging.DEBUG)
- elif args.dump_single or args.dump or args.get_outfile:
- # Avoid printing anything besides the dump output
- logging.basicConfig(level=logging.WARNING)
- else:
- logging.basicConfig(level=logging.INFO)
-
- metadata = Metadata.load(args.metadata)
-
- if args.get_outfile:
- model_plus = load_some_model(args.model)
- params = Params.load(model_plus)
- model = convert_model_names(model_plus.model, params, args.skip_unknown)
- model_params_count = model_parameter_count(model_plus.model)
- ftype = pick_output_type(model, args.outtype)
- print(f"{default_convention_outfile(ftype, params, model_params_count, metadata)}") # noqa: NP100
- return
-
- if args.no_vocab and args.vocab_only:
- raise ValueError("--vocab-only does not make sense with --no-vocab")
-
- if args.dump_single:
- model_plus = lazy_load_file(args.model)
- do_dump_model(model_plus)
- return
-
- if not args.vocab_only:
- model_plus = load_some_model(args.model)
- else:
- model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None)
-
- model_params_count = model_parameter_count(model_plus.model)
- logger.info(f"model parameters count : {model_params_count} ({model_parameter_count_rounded_notation(model_params_count)})")
-
- if args.dump:
- do_dump_model(model_plus)
- return
-
- endianess = gguf.GGUFEndian.LITTLE
- if args.big_endian:
- endianess = gguf.GGUFEndian.BIG
-
- params = None
- if args.pad_vocab or not args.vocab_only:
- params = Params.load(model_plus)
- if params.n_ctx == -1:
- if args.ctx is None:
- msg = """\
- The model doesn't have a context size, and you didn't specify one with --ctx
- Please specify one with --ctx:
- - LLaMA v1: --ctx 2048
- - LLaMA v2: --ctx 4096"""
- parser.error(textwrap.dedent(msg))
- params.n_ctx = args.ctx
-
- if args.outtype:
- params.ftype = {
- "f32": GGMLFileType.AllF32,
- "f16": GGMLFileType.MostlyF16,
- "q8_0": GGMLFileType.MostlyQ8_0,
- }[args.outtype]
-
- logger.info(f"params = {params}")
-
- model_parent_path = model_plus.paths[0].parent
- vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
- vocab_factory = VocabFactory(vocab_path)
- vocab_types = None if args.no_vocab else args.vocab_type.split(",")
- vocab, special_vocab = vocab_factory.load_vocab(vocab_types, model_parent_path)
-
- if args.vocab_only:
- assert isinstance(vocab, Vocab)
- if not args.outfile:
- raise ValueError("need --outfile if using --vocab-only")
- outfile = args.outfile
- if params is None:
- params = Params(
- n_vocab = vocab.vocab_size,
- n_embd = 1,
- n_layer = 1,
- n_ctx = 1,
- n_ff = 1,
- n_head = 1,
- n_head_kv = 1,
- f_norm_eps = 1e-5,
- )
- OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
- endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata)
- logger.info(f"Wrote {outfile}")
- return
-
- if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab:
- vocab = model_plus.vocab
-
- logger.info(f"Vocab info: {vocab}")
- logger.info(f"Special vocab info: {special_vocab}")
- model = model_plus.model
- model = convert_model_names(model, params, args.skip_unknown)
- ftype = pick_output_type(model, args.outtype)
- model = convert_to_output_type(model, ftype)
- outfile = args.outfile or default_outfile(model_plus.paths, ftype, params, model_params_count, metadata)
-
- params.ftype = ftype
- logger.info(f"Writing {outfile}, format {ftype}")
-
- OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
- concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata)
- logger.info(f"Wrote {outfile}")
-
-
-if __name__ == '__main__':
- main()