summaryrefslogtreecommitdiff
path: root/examples/convert_legacy_llama.py
diff options
context:
space:
mode:
Diffstat (limited to 'examples/convert_legacy_llama.py')
-rwxr-xr-xexamples/convert_legacy_llama.py1440
1 files changed, 1440 insertions, 0 deletions
diff --git a/examples/convert_legacy_llama.py b/examples/convert_legacy_llama.py
new file mode 100755
index 00000000..9ab9ab06
--- /dev/null
+++ b/examples/convert_legacy_llama.py
@@ -0,0 +1,1440 @@
+#!/usr/bin/env python3
+from __future__ import annotations
+
+import logging
+import argparse
+import concurrent.futures
+import enum
+import faulthandler
+import functools
+import itertools
+import json
+import math
+import mmap
+import os
+import pickle
+import re
+import signal
+import struct
+import sys
+import textwrap
+import time
+import zipfile
+from abc import ABC, abstractmethod
+from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
+from dataclasses import dataclass
+from pathlib import Path
+from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar
+
+import numpy as np
+
+if 'NO_LOCAL_GGUF' not in os.environ:
+ # use .parent.parent since we are in "examples" directory
+ sys.path.insert(1, str(Path(__file__).parent.parent / 'gguf-py'))
+
+import gguf
+from gguf import BaseVocab, Vocab, NoVocab, BpeVocab, SentencePieceVocab, LlamaHfVocab
+
+if TYPE_CHECKING:
+ from typing_extensions import Self, TypeAlias
+
+logger = logging.getLogger("convert")
+
+if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
+ faulthandler.register(signal.SIGUSR1)
+
+NDArray: TypeAlias = 'np.ndarray[Any, Any]'
+
+ARCH = gguf.MODEL_ARCH.LLAMA
+
+DEFAULT_CONCURRENCY = 8
+
+ADDED_TOKENS_FILE = 'added_tokens.json'
+FAST_TOKENIZER_FILE = 'tokenizer.json'
+
+#
+# data types
+#
+
+
+@dataclass(frozen=True)
+class DataType:
+ name: str
+ dtype: np.dtype[Any]
+ valid_conversions: list[str]
+
+ def elements_to_bytes(self, n_elements: int) -> int:
+ return n_elements * self.dtype.itemsize
+
+
+@dataclass(frozen=True)
+class UnquantizedDataType(DataType):
+ pass
+
+
+DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
+DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
+DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
+DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
+
+
+@dataclass(frozen=True)
+class QuantizedDataType(DataType):
+ block_size: int
+ quantized_dtype: np.dtype[Any]
+ ggml_type: gguf.GGMLQuantizationType
+
+ def quantize(self, arr: NDArray) -> NDArray:
+ raise NotImplementedError(f'Quantization for {self.name} not implemented')
+
+ def elements_to_bytes(self, n_elements: int) -> int:
+ assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
+ return self.quantized_dtype.itemsize * (n_elements // self.block_size)
+
+
+@dataclass(frozen=True)
+class Q8_0QuantizedDataType(QuantizedDataType):
+ # Mini Q8_0 quantization in Python!
+ def quantize(self, arr: NDArray) -> NDArray:
+ assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}'
+ assert arr.dtype == np.float32, f'Bad array type {arr.dtype}'
+ n_blocks = arr.size // self.block_size
+ blocks = arr.reshape((n_blocks, self.block_size))
+ # Much faster implementation of block quantization contributed by @Cebtenzzre
+
+ def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
+ d = abs(blocks).max(axis = 1) / np.float32(127)
+ with np.errstate(divide = 'ignore'):
+ qs = (blocks / d[:, None]).round()
+ qs[d == 0] = 0
+ yield from zip(d, qs)
+ return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
+
+
+DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
+ dtype = np.dtype(np.float32), valid_conversions = [],
+ ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
+ quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
+
+# Quantized types skipped here because they may also map to np.float32
+NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
+for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
+ if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
+ raise ValueError(f'Invalid duplicate data type {dt}')
+ NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt
+
+SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
+ 'BF16': DT_BF16,
+ 'F16': DT_F16,
+ 'F32': DT_F32,
+ 'I32': DT_I32,
+}
+
+# TODO: match this with `llama_ftype`
+# TODO: rename to LLAMAFileType
+# TODO: move to `gguf.py`
+
+
+class GGMLFileType(enum.IntEnum):
+ AllF32 = 0
+ MostlyF16 = 1 # except 1d tensors
+ MostlyQ8_0 = 7 # except 1d tensors
+
+ def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType:
+ dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
+ if dt is None:
+ raise ValueError(self)
+ # Convert all 1D tensors to F32. Most of the codebase that takes in 1D tensors only handles F32 tensors, and most of the outputs tensors are F32.
+ # Also The 1d tensors aren't much of a performance/size issue. So instead of having to have separate F32 and F16 implementations of both, just convert everything to F32 for now.
+ return dt if len(tensor.shape) > 1 else DT_F32
+
+
+GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
+ GGMLFileType.AllF32 : DT_F32,
+ GGMLFileType.MostlyF16 : DT_F16,
+ GGMLFileType.MostlyQ8_0: DT_Q8_0,
+}
+
+#
+# hparams loading
+#
+
+
+@dataclass
+class Params:
+ n_vocab: int
+ n_embd: int
+ n_layer: int
+ n_ctx: int
+ n_ff: int
+ n_head: int
+ n_head_kv: int
+ n_experts: int | None = None
+ n_experts_used: int | None = None
+ f_norm_eps: float | None = None
+
+ rope_scaling_type: gguf.RopeScalingType | None = None
+ f_rope_freq_base: float | None = None
+ f_rope_scale: float | None = None
+ n_ctx_orig: int | None = None
+ rope_finetuned: bool | None = None
+
+ ftype: GGMLFileType | None = None
+
+ # path to the directory containing the model files
+ path_model: Path | None = None
+
+ @staticmethod
+ def guessed(model: LazyModel) -> Params:
+ # try transformer naming first
+ n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
+
+ # try transformer naming first
+ if "model.layers.0.self_attn.q_proj.weight" in model:
+ n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
+ elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
+ n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
+ else:
+ n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
+
+ if n_layer < 1:
+ msg = """\
+ failed to guess 'n_layer'. This model is unknown or unsupported.
+ Suggestion: provide 'config.json' of the model in the same directory containing model files."""
+ raise KeyError(textwrap.dedent(msg))
+
+ n_head = n_embd // 128 # guessed
+ n_mult = 256 # guessed
+
+ # TODO: verify this
+ n_ff = int(2 * (4 * n_embd) / 3)
+ n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult)
+
+ return Params(
+ n_vocab = n_vocab,
+ n_embd = n_embd,
+ n_layer = n_layer,
+ n_ctx = -1,
+ n_ff = n_ff,
+ n_head = n_head,
+ n_head_kv = n_head,
+ f_norm_eps = 1e-5,
+ )
+
+ @staticmethod
+ def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
+ with open(config_path) as f:
+ config = json.load(f)
+
+ rope_scaling_type = f_rope_scale = n_ctx_orig = rope_finetuned = None
+ rope_scaling = config.get("rope_scaling")
+
+ if rope_scaling is not None and (typ := rope_scaling.get("type")):
+ rope_factor = rope_scaling.get("factor")
+ f_rope_scale = rope_factor
+ if typ == "linear":
+ rope_scaling_type = gguf.RopeScalingType.LINEAR
+ elif typ == "yarn":
+ rope_scaling_type = gguf.RopeScalingType.YARN
+ n_ctx_orig = rope_scaling['original_max_position_embeddings']
+ rope_finetuned = rope_scaling['finetuned']
+ else:
+ raise NotImplementedError(f'Unknown rope scaling type: {typ}')
+
+ if "max_sequence_length" in config:
+ n_ctx = config["max_sequence_length"]
+ elif "max_position_embeddings" in config:
+ n_ctx = config["max_position_embeddings"]
+ else:
+ msg = """\
+ failed to guess 'n_ctx'. This model is unknown or unsupported.
+ Suggestion: provide 'config.json' of the model in the same directory containing model files."""
+ raise KeyError(textwrap.dedent(msg))
+
+ n_experts = None
+ n_experts_used = None
+
+ if "num_local_experts" in config:
+ n_experts = config["num_local_experts"]
+ n_experts_used = config["num_experts_per_tok"]
+
+ return Params(
+ n_vocab = config["vocab_size"],
+ n_embd = config["hidden_size"],
+ n_layer = config["num_hidden_layers"],
+ n_ctx = n_ctx,
+ n_ff = config["intermediate_size"],
+ n_head = (n_head := config["num_attention_heads"]),
+ n_head_kv = config.get("num_key_value_heads", n_head),
+ n_experts = n_experts,
+ n_experts_used = n_experts_used,
+ f_norm_eps = config["rms_norm_eps"],
+ f_rope_freq_base = config.get("rope_theta"),
+ rope_scaling_type = rope_scaling_type,
+ f_rope_scale = f_rope_scale,
+ n_ctx_orig = n_ctx_orig,
+ rope_finetuned = rope_finetuned,
+ )
+
+ # LLaMA v2 70B params.json
+ # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
+ @staticmethod
+ def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
+ with open(config_path) as f:
+ config = json.load(f)
+
+ n_experts = None
+ n_experts_used = None
+ f_rope_freq_base = None
+ n_ff = None
+
+ # hack to determine LLaMA v1 vs v2 vs CodeLlama
+ if config.get("moe"):
+ # Mixtral
+ n_ctx = 32768
+ elif config.get("rope_theta") == 1000000:
+ # CodeLlama
+ n_ctx = 16384
+ elif config["norm_eps"] == 1e-05:
+ # LLaMA v2
+ n_ctx = 4096
+ else:
+ # LLaMA v1
+ n_ctx = 2048
+
+ if "layers.0.feed_forward.w1.weight" in model:
+ n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
+
+ if config.get("moe"):
+ n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0]
+ n_experts = config["moe"]["num_experts"]
+ n_experts_used = config["moe"]["num_experts_per_tok"]
+ f_rope_freq_base = 1e6
+
+ assert n_ff is not None
+
+ return Params(
+ n_vocab = model["tok_embeddings.weight"].shape[0],
+ n_embd = config["dim"],
+ n_layer = config["n_layers"],
+ n_ctx = n_ctx,
+ n_ff = n_ff,
+ n_head = (n_head := config["n_heads"]),
+ n_head_kv = config.get("n_kv_heads", n_head),
+ n_experts = n_experts,
+ n_experts_used = n_experts_used,
+ f_norm_eps = config["norm_eps"],
+ f_rope_freq_base = config.get("rope_theta", f_rope_freq_base),
+ )
+
+ @staticmethod
+ def load(model_plus: ModelPlus) -> Params:
+ hf_config_path = model_plus.paths[0].parent / "config.json"
+ orig_config_path = model_plus.paths[0].parent / "params.json"
+
+ if hf_config_path.exists():
+ params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
+ elif orig_config_path.exists():
+ params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
+ elif model_plus.format != 'none':
+ params = Params.guessed(model_plus.model)
+ else:
+ raise ValueError('Cannot guess params when model format is none')
+
+ params.path_model = model_plus.paths[0].parent
+
+ return params
+
+
+#
+# data loading
+# TODO: reuse (probably move to gguf.py?)
+#
+
+
+def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
+ if n_head_kv is not None and n_head != n_head_kv:
+ n_head = n_head_kv
+ return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+ .swapaxes(1, 2)
+ .reshape(weights.shape))
+
+
+class Tensor(ABC):
+ ndarray: NDArray
+ data_type: DataType
+
+ @abstractmethod
+ def astype(self, data_type: DataType) -> Self: ...
+ @abstractmethod
+ def permute(self, n_head: int, n_head_kv: int) -> Self: ...
+ @abstractmethod
+ def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> Self: ...
+ @abstractmethod
+ def part(self, n_part: int) -> Self: ...
+ @abstractmethod
+ def to_ggml(self) -> GGMLCompatibleTensor: ...
+
+
+def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
+ assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
+ fp32_arr = bf16_arr.astype(np.uint32) << 16
+ return fp32_arr.view(np.float32)
+
+
+class UnquantizedTensor(Tensor):
+ def __init__(self, ndarray: NDArray):
+ assert isinstance(ndarray, np.ndarray)
+ self.ndarray = ndarray
+ self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
+
+ def astype(self, data_type: DataType) -> UnquantizedTensor:
+ dtype = data_type.dtype
+ if self.data_type == DT_BF16:
+ self.ndarray = bf16_to_fp32(self.ndarray)
+ return UnquantizedTensor(self.ndarray.astype(dtype))
+
+ def to_ggml(self) -> Self:
+ return self
+
+ def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
+ r = self.ndarray.shape[0] // 3
+ return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
+
+ def part(self, n_part: int) -> UnquantizedTensor:
+ r = self.ndarray.shape[0] // 3
+ return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
+
+ def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor:
+ return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))
+
+
+def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray:
+ tensor = lazy_tensor.load()
+ assert isinstance(tensor, UnquantizedTensor)
+
+ # double-check:
+ actual_shape = list(tensor.ndarray.shape)
+ assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
+ if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
+ if convert:
+ tensor.ndarray = tensor.ndarray.astype(expected_dtype)
+ else:
+ raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
+
+ return tensor.ndarray
+
+
+GGMLCompatibleTensor = UnquantizedTensor
+
+
+@dataclass
+class LazyTensor:
+ _load: Callable[[], Tensor]
+ shape: list[int]
+ data_type: DataType
+ description: str
+
+ def load(self) -> Tensor:
+ ret = self._load()
+ # Should be okay if it maps to the same numpy type?
+ assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
+ (self.data_type, ret.data_type, self.description)
+ return ret
+
+ def astype(self, data_type: DataType) -> LazyTensor:
+ self.validate_conversion_to(data_type)
+
+ def load() -> Tensor:
+ return self.load().astype(data_type)
+ return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
+
+ def validate_conversion_to(self, data_type: DataType) -> None:
+ if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions:
+ raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
+
+
+LazyModel: TypeAlias = 'dict[str, LazyTensor]'
+
+ModelFormat: TypeAlias = Literal['ggml', 'torch', 'safetensors', 'none']
+
+@dataclass
+class ModelPlus:
+ model: LazyModel
+ paths: list[Path] # Where this was read from.
+ format: ModelFormat
+ vocab: BaseVocab | None # For GGML models (which have vocab built in), the vocab.
+
+
+def merge_sharded(models: list[LazyModel]) -> LazyModel:
+ # Original LLaMA models have each file contain one part of each tensor.
+ # Use a dict instead of a set to preserve order.
+ names = {name: None for model in models for name in model}
+
+ def convert(name: str) -> LazyTensor:
+ lazy_tensors = [model[name] for model in models]
+ if len(lazy_tensors) == 1:
+ # only one file; don't go through this procedure since there might
+ # be quantized tensors
+ return lazy_tensors[0]
+ if len(lazy_tensors[0].shape) == 1:
+ # the tensor is just duplicated in every file
+ return lazy_tensors[0]
+ if name.startswith('tok_embeddings.') or \
+ name.endswith('.attention.wo.weight') or \
+ name.endswith('.feed_forward.w2.weight'):
+ # split by columns
+ axis = 1
+ else:
+ # split by rows
+ axis = 0
+ concatenated_shape = list(lazy_tensors[0].shape)
+ concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
+
+ def load() -> UnquantizedTensor:
+ ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
+ concatenated = np.concatenate(ndarrays, axis=axis)
+ return UnquantizedTensor(concatenated)
+ description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
+ return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
+ return {name: convert(name) for name in names}
+
+
+def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
+ formats: set[ModelFormat] = set(mp.format for mp in models_plus)
+ assert len(formats) == 1, "different formats?"
+ format = formats.pop()
+ paths = [path for mp in models_plus for path in mp.paths]
+ # Use the first non-None vocab, if any.
+ try:
+ vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
+ except StopIteration:
+ vocab = None
+
+ if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
+ # Transformers models put different tensors in different files, but
+ # don't split individual tensors between files.
+ model: LazyModel = {}
+ for mp in models_plus:
+ model.update(mp.model)
+ else:
+ model = merge_sharded([mp.model for mp in models_plus])
+
+ return ModelPlus(model, paths, format, vocab)
+
+
+def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
+ def load() -> Tensor:
+ return lazy_tensor.load().permute(n_head, n_head_kv)
+ return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
+
+
+def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
+ def load() -> Tensor:
+ return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
+ s = lazy_tensor.shape.copy()
+ s[0] = s[0] // 3
+ return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
+
+
+def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
+ def load() -> Tensor:
+ return lazy_tensor.load().part(n_part)
+ s = lazy_tensor.shape.copy()
+ s[0] = s[0] // 3
+ return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
+
+
+def pack_experts_lazy(lazy_tensors: list[LazyTensor]) -> LazyTensor:
+ def load() -> Tensor:
+ tensors = [lazy_tensor.load() for lazy_tensor in lazy_tensors]
+ return UnquantizedTensor(np.array([tensor.ndarray for tensor in tensors]))
+ s = lazy_tensors[0].shape.copy()
+ s.insert(0, len(lazy_tensors))
+ return LazyTensor(load, s, lazy_tensors[0].data_type, 'pack_experts ' + ' | '.join(lt.description for lt in lazy_tensors))
+
+
+# Functionality that simulates `torch.load` but where individual tensors are
+# only loaded into memory on demand, not all at once.
+# PyTorch can't do this natively as of time of writing:
+# - https://github.com/pytorch/pytorch/issues/64327
+# This allows us to de-shard without multiplying RAM usage, and also
+# conveniently drops the PyTorch dependency (though we still need numpy).
+
+
+@dataclass
+class LazyStorageKind:
+ data_type: DataType
+
+
+@dataclass
+class LazyStorage:
+ load: Callable[[int, int], NDArray]
+ kind: LazyStorageKind
+ description: str
+
+
+class LazyUnpickler(pickle.Unpickler):
+ def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
+ super().__init__(fp)
+ self.data_base_path = data_base_path
+ self.zip_file = zip_file
+
+ def persistent_load(self, pid: Any) -> Any:
+ assert pid[0] == 'storage'
+ assert isinstance(pid[1], LazyStorageKind)
+ data_type = pid[1].data_type
+ filename_stem = pid[2]
+ filename = f'{self.data_base_path}/{filename_stem}'
+ info = self.zip_file.getinfo(filename)
+
+ def load(offset: int, elm_count: int) -> NDArray:
+ dtype = data_type.dtype
+ with self.zip_file.open(info) as fp:
+ fp.seek(offset * dtype.itemsize)
+ size = elm_count * dtype.itemsize
+ data = fp.read(size)
+ assert len(data) == size
+ return np.frombuffer(data, dtype)
+ description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
+ return LazyStorage(load=load, kind=pid[1], description=description)
+
+ @staticmethod
+ def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
+ requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
+ assert isinstance(storage, LazyStorage)
+
+ def load() -> UnquantizedTensor:
+ elm_count = stride[0] * size[0]
+ return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
+ description = f'pickled storage_offset={storage_offset} in {storage.description}'
+ return LazyTensor(load, list(size), storage.kind.data_type, description)
+
+ @staticmethod
+ def rebuild_from_type_v2(func, new_type, args, state):
+ return func(*args)
+
+ CLASSES: dict[tuple[str, str], type[LazyTensor] | LazyStorageKind] = {
+ # getattr used here as a workaround for mypy not being smart enough to determine
+ # the staticmethods have a __func__ attribute.
+ ('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
+ ('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
+ ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
+ ('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
+ ('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
+ ('torch', 'IntStorage'): LazyStorageKind(DT_I32),
+ ('torch', 'Tensor'): LazyTensor,
+ }
+
+ def find_class(self, module: str, name: str) -> Any:
+ if not module.startswith('torch'):
+ return super().find_class(module, name)
+ return self.CLASSES[(module, name)]
+
+
+def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
+ zf = zipfile.ZipFile(outer_fp)
+ pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
+ assert len(pickle_paths) == 1, pickle_paths
+ pickle_fp = zf.open(pickle_paths[0], 'r')
+ unpickler = LazyUnpickler(pickle_fp,
+ data_base_path=pickle_paths[0][:-4],
+ zip_file=zf)
+ model = unpickler.load()
+ if 'model' in model: model = model['model']
+ as_dict = dict(model.items())
+ return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
+
+
+def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
+ header_size, = struct.unpack('<Q', fp.read(8))
+ header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size))
+ # Use mmap for the actual data to avoid race conditions with the file offset.
+ mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
+ byte_buf = mapped[8 + header_size:]
+
+ def convert(info: dict[str, Any]) -> LazyTensor:
+ data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
+ numpy_dtype = data_type.dtype
+ shape: list[int] = info['shape']
+ begin, end = info['data_offsets']
+ assert 0 <= begin <= end <= len(byte_buf)
+ assert end - begin == math.prod(shape) * numpy_dtype.itemsize
+ buf = byte_buf[begin:end]
+
+ def load() -> UnquantizedTensor:
+ return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
+ description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
+ return LazyTensor(load, shape, data_type, description)
+ model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
+ return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
+
+
+def must_read(fp: IO[bytes], length: int) -> bytes:
+ ret = fp.read(length)
+ if len(ret) < length:
+ raise EOFError("unexpectedly reached end of file")
+ return ret
+
+
+@functools.lru_cache(maxsize=None)
+def lazy_load_file(path: Path) -> ModelPlus:
+ fp = open(path, 'rb')
+ first8 = fp.read(8)
+ fp.seek(0)
+ if first8[:2] == b'PK':
+ # A zip file, i.e. PyTorch format
+ return lazy_load_torch_file(fp, path)
+ elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
+ # Probably safetensors
+ return lazy_load_safetensors_file(fp, path)
+ else:
+ raise ValueError(f"unknown format: {path}")
+
+
+In = TypeVar('In')
+Out = TypeVar('Out')
+
+
+def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
+ '''Parallel map, but with backpressure. If the caller doesn't call `next`
+ fast enough, this will stop calling `func` at some point rather than
+ letting results pile up in memory. Specifically, there is a max of one
+ output value buffered per thread.'''
+ if concurrency < 2:
+ yield from map(func, iterable)
+ # Not reached.
+ iterable = iter(iterable)
+ executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor]
+ if use_processpool_executor:
+ executor_class = ProcessPoolExecutor
+ else:
+ executor_class = ThreadPoolExecutor
+ with executor_class(max_workers=max_workers) as executor:
+ futures: list[concurrent.futures.Future[Out]] = []
+ done = False
+ for _ in range(concurrency):
+ try:
+ futures.append(executor.submit(func, next(iterable)))
+ except StopIteration:
+ done = True
+ break
+
+ while futures:
+ result = futures.pop(0).result()
+ while not done and len(futures) < concurrency:
+ try:
+ futures.append(executor.submit(func, next(iterable)))
+ except StopIteration:
+ done = True
+ break
+ yield result
+
+
+def check_vocab_size(params: Params, vocab: BaseVocab, pad_vocab: bool = False) -> None:
+ # Handle special case where the model's vocab size is not set
+ if params.n_vocab == -1:
+ raise ValueError(
+ "The model's vocab size is set to -1 in params.json. Please update it manually."
+ + (f" Maybe {vocab.vocab_size}?" if isinstance(vocab, Vocab) else ""),
+ )
+ if not isinstance(vocab, Vocab):
+ return # model has no vocab
+
+ # Check for a vocab size mismatch
+ if params.n_vocab == vocab.vocab_size:
+ logger.warning("Ignoring added_tokens.json since model matches vocab size without it.")
+ return
+
+ if pad_vocab and params.n_vocab > vocab.vocab_size:
+ pad_count = params.n_vocab - vocab.vocab_size
+ logger.debug(
+ f"Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>"
+ )
+ for i in range(1, pad_count + 1):
+ vocab.added_tokens_dict[f"<dummy{i:05}>"] = -1
+ vocab.added_tokens_list.append(f"<dummy{i:05}>")
+ vocab.vocab_size = params.n_vocab
+ return
+
+ msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer} has {vocab.vocab_size})."
+ if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20:
+ msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
+ if vocab.vocab_size < params.n_vocab:
+ msg += " Add the --pad-vocab option and try again."
+
+ raise ValueError(msg)
+
+
+class OutputFile:
+ def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE):
+ self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
+
+ def add_meta_model(self, params: Params, metadata: gguf.Metadata | None) -> None:
+ # Metadata About The Model And Its Provenence
+ name = "LLaMA"
+ if metadata is not None and metadata.name is not None:
+ name = metadata.name
+ elif params.path_model is not None:
+ name = params.path_model.name
+ elif params.n_ctx == 4096:
+ # Heuristic detection of LLaMA v2 model
+ name = "LLaMA v2"
+
+ self.gguf.add_name(name)
+
+ if metadata is not None:
+ if metadata.author is not None:
+ self.gguf.add_author(metadata.author)
+ if metadata.version is not None:
+ self.gguf.add_version(metadata.version)
+ if metadata.organization is not None:
+ self.gguf.add_organization(metadata.organization)
+
+ if metadata.finetune is not None:
+ self.gguf.add_finetune(metadata.finetune)
+ if metadata.basename is not None:
+ self.gguf.add_basename(metadata.basename)
+
+ if metadata.description is not None:
+ self.gguf.add_description(metadata.description)
+ if metadata.quantized_by is not None:
+ self.gguf.add_quantized_by(metadata.quantized_by)
+
+ if metadata.size_label is not None:
+ self.gguf.add_size_label(metadata.size_label)
+
+ if metadata.license is not None:
+ self.gguf.add_license(metadata.license)
+ if metadata.license_name is not None:
+ self.gguf.add_license_name(metadata.license_name)
+ if metadata.license_link is not None:
+ self.gguf.add_license_link(metadata.license_link)
+
+ if metadata.url is not None:
+ self.gguf.add_url(metadata.url)
+ if metadata.doi is not None:
+ self.gguf.add_doi(metadata.doi)
+ if metadata.uuid is not None:
+ self.gguf.add_uuid(metadata.uuid)
+ if metadata.repo_url is not None:
+ self.gguf.add_repo_url(metadata.repo_url)
+
+ if metadata.source_url is not None:
+ self.gguf.add_source_url(metadata.source_url)
+ if metadata.source_doi is not None:
+ self.gguf.add_source_doi(metadata.source_doi)
+ if metadata.source_uuid is not None:
+ self.gguf.add_source_uuid(metadata.source_uuid)
+ if metadata.source_repo_url is not None:
+ self.gguf.add_source_repo_url(metadata.source_repo_url)
+
+ if metadata.base_models is not None:
+ self.gguf.add_base_model_count(len(metadata.base_models))
+ for key, base_model_entry in enumerate(metadata.base_models):
+ if "name" in base_model_entry:
+ self.gguf.add_base_model_name(key, base_model_entry["name"])
+ if "author" in base_model_entry:
+ self.gguf.add_base_model_author(key, base_model_entry["author"])
+ if "version" in base_model_entry:
+ self.gguf.add_base_model_version(key, base_model_entry["version"])
+ if "organization" in base_model_entry:
+ self.gguf.add_base_model_organization(key, base_model_entry["organization"])
+ if "url" in base_model_entry:
+ self.gguf.add_base_model_url(key, base_model_entry["url"])
+ if "doi" in base_model_entry:
+ self.gguf.add_base_model_doi(key, base_model_entry["doi"])
+ if "uuid" in base_model_entry:
+ self.gguf.add_base_model_uuid(key, base_model_entry["uuid"])
+ if "repo_url" in base_model_entry:
+ self.gguf.add_base_model_repo_url(key, base_model_entry["repo_url"])
+
+ if metadata.tags is not None:
+ self.gguf.add_tags(metadata.tags)
+ if metadata.languages is not None:
+ self.gguf.add_languages(metadata.languages)
+ if metadata.datasets is not None:
+ self.gguf.add_datasets(metadata.datasets)
+
+ def add_meta_arch(self, params: Params) -> None:
+ # Metadata About The Neural Architecture Itself
+ self.gguf.add_vocab_size(params.n_vocab)
+ self.gguf.add_context_length(params.n_ctx)
+ self.gguf.add_embedding_length(params.n_embd)
+ self.gguf.add_block_count(params.n_layer)
+ self.gguf.add_feed_forward_length(params.n_ff)
+ self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
+ self.gguf.add_head_count (params.n_head)
+ self.gguf.add_head_count_kv (params.n_head_kv)
+
+ if params.n_experts:
+ self.gguf.add_expert_count(params.n_experts)
+
+ if params.n_experts_used:
+ self.gguf.add_expert_used_count(params.n_experts_used)
+
+ if params.f_norm_eps:
+ self.gguf.add_layer_norm_rms_eps(params.f_norm_eps)
+ else:
+ raise ValueError('f_norm_eps is None')
+
+ if params.f_rope_freq_base is not None:
+ self.gguf.add_rope_freq_base(params.f_rope_freq_base)
+
+ if params.rope_scaling_type:
+ assert params.f_rope_scale is not None
+ self.gguf.add_rope_scaling_type(params.rope_scaling_type)
+ self.gguf.add_rope_scaling_factor(params.f_rope_scale)
+
+ if params.n_ctx_orig is not None:
+ self.gguf.add_rope_scaling_orig_ctx_len(params.n_ctx_orig)
+
+ if params.rope_finetuned is not None:
+ self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)
+
+ if params.ftype is not None:
+ self.gguf.add_file_type(params.ftype)
+
+ def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]:
+ tokens = []
+ scores = []
+ toktypes = []
+
+ # NOTE: `all_tokens` returns the base vocabulary and added tokens
+ for text, score, toktype in vocab.all_tokens():
+ tokens.append(text)
+ scores.append(score)
+ toktypes.append(toktype)
+
+ assert len(tokens) == vocab.vocab_size
+
+ return tokens, scores, toktypes
+
+ def add_meta_vocab(self, vocab: Vocab) -> None:
+ # Ensure that tokenizer_model is added to the GGUF model
+ self.gguf.add_tokenizer_model(vocab.tokenizer_model)
+
+ # Extract model vocabulary for model conversion
+ tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab)
+
+ # Add extracted token information for model conversion
+ self.gguf.add_token_list(tokens)
+ self.gguf.add_token_scores(scores)
+ self.gguf.add_token_types(toktypes)
+
+ def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None:
+ svocab.add_to_gguf(self.gguf)
+
+ def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
+ n_elements = int(np.prod(tensor.shape))
+ raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
+ data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
+ data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
+ self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype)
+
+ def write_meta(self) -> None:
+ self.gguf.write_header_to_file()
+ self.gguf.write_kv_data_to_file()
+
+ def write_tensor_info(self) -> None:
+ self.gguf.write_ti_data_to_file()
+
+ def write_tensor_data(self, ftype: GGMLFileType, model: LazyModel, concurrency: int) -> None:
+ ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency=concurrency)
+ if ftype == GGMLFileType.MostlyQ8_0:
+ ndarrays = bounded_parallel_map(
+ OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency,
+ use_processpool_executor=True,
+ )
+ else:
+ ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
+
+ start = time.time()
+ for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
+ elapsed = time.time() - start
+ size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
+ padi = len(str(len(model)))
+ logger.info(
+ f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
+ )
+ self.gguf.write_tensor_data(ndarray)
+
+ def close(self) -> None:
+ self.gguf.close()
+
+ @staticmethod
+ def write_vocab_only(
+ fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
+ endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: gguf.Metadata | None = None,
+ ) -> None:
+ check_vocab_size(params, vocab, pad_vocab=pad_vocab)
+
+ of = OutputFile(fname_out, endianess=endianess)
+
+ # meta data
+ of.add_meta_model(params, metadata)
+ of.add_meta_arch(params)
+ of.add_meta_vocab(vocab)
+ of.add_meta_special_vocab(svocab)
+
+ of.write_meta()
+
+ of.close()
+
+ @staticmethod
+ def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]:
+ name, lazy_tensor = item
+ tensor = lazy_tensor.load().to_ggml()
+ return (lazy_tensor.data_type, tensor.ndarray)
+
+ @staticmethod
+ def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray:
+ dt, arr = item
+ if not isinstance(dt, QuantizedDataType):
+ return arr
+ return dt.quantize(arr)
+
+ @staticmethod
+ def write_all(
+ fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab,
+ concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
+ pad_vocab: bool = False,
+ metadata: gguf.Metadata | None = None,
+ ) -> None:
+ check_vocab_size(params, vocab, pad_vocab=pad_vocab)
+
+ of = OutputFile(fname_out, endianess=endianess)
+
+ # meta data
+ of.add_meta_model(params, metadata)
+ of.add_meta_arch(params)
+ if isinstance(vocab, Vocab):
+ of.add_meta_vocab(vocab)
+ of.add_meta_special_vocab(svocab)
+ else: # NoVocab
+ of.gguf.add_tokenizer_model(vocab.tokenizer_model)
+
+ # tensor info
+ for name, lazy_tensor in model.items():
+ of.add_tensor_info(name, lazy_tensor)
+
+ of.write_meta()
+ of.write_tensor_info()
+
+ # tensor data
+ of.write_tensor_data(ftype, model, concurrency)
+
+ of.close()
+
+
+def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
+ wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type
+
+ if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
+ return GGMLFileType.AllF32
+ if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
+ return GGMLFileType.MostlyF16
+ if output_type_str == "q8_0":
+ return GGMLFileType.MostlyQ8_0
+
+ name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
+
+ raise ValueError(f"Unexpected combination of types: {name_to_type}")
+
+
+def per_model_weight_count_estimation(tensors: Iterable[tuple[str, LazyTensor]]) -> tuple[int, int, int]:
+ total_params = 0
+ shared_params = 0
+ expert_params = 0
+
+ for name, lazy_tensor in tensors:
+ # We don't need these
+ if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
+ continue
+
+ # Got A Tensor
+ sum_weights_in_tensor: int = 1
+
+ # Tensor Volume
+ for dim in lazy_tensor.shape:
+ sum_weights_in_tensor *= dim
+
+ if ".experts." in name:
+ if ".experts.0." in name:
+ expert_params += sum_weights_in_tensor
+ else:
+ shared_params += sum_weights_in_tensor
+
+ total_params += sum_weights_in_tensor
+
+ return total_params, shared_params, expert_params
+
+
+def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
+ return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
+ for (name, tensor) in model.items()}
+
+
+def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) -> LazyModel:
+ tmap = gguf.TensorNameMap(ARCH, params.n_layer)
+ should_skip = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
+
+ tmp = model
+
+ # merge experts into one tensor
+ if params.n_experts and params.n_experts > 0:
+ for i_l in range(params.n_layer):
+ for w in range(1, 4):
+ experts = []
+ for e in range(params.n_experts):
+ if f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight" in model:
+ experts.append(model[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"])
+ del tmp[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"]
+ elif f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight" in model:
+ experts.append(model[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"])
+ del tmp[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"]
+ else:
+ raise ValueError(f"Expert tensor not found: layers.{i_l}.feed_forward.experts.{e}.w{w}.weight")
+ tmp[f"layers.{i_l}.feed_forward.experts.w{w}.weight"] = pack_experts_lazy(experts)
+
+ # HF models permut or pack some of the tensors, so we need to undo that
+ for i in itertools.count():
+ if f"model.layers.{i}.self_attn.q_proj.weight" in model:
+ logger.debug(f"Permuting layer {i}")
+ tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
+ tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
+ # tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
+ elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
+ logger.debug(f"Unpacking and permuting layer {i}")
+ tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
+ tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
+ tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
+ del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
+ else:
+ break
+
+ out: LazyModel = {}
+ for name, lazy_tensor in model.items():
+ tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
+ if name_new is None:
+ if skip_unknown:
+ logger.warning(f"Unexpected tensor name: {name} - skipping")
+ continue
+ raise ValueError(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)")
+
+ if tensor_type in should_skip:
+ logger.debug(f"skipping tensor {name_new}")
+ continue
+
+ logger.debug(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
+ out[name_new] = lazy_tensor
+
+ return out
+
+
+def nth_multifile_path(path: Path, n: int) -> Path | None:
+ '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
+ the nth path in the model.
+ '''
+ # Support the following patterns:
+ patterns = [
+ # - x.00.pth, x.01.pth, etc.
+ (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
+ # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
+ (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
+ # x.bin, x.bin.1, etc.
+ (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
+ ]
+ for regex, replacement in patterns:
+ if re.search(regex, path.name):
+ new_path = path.with_name(re.sub(regex, replacement, path.name))
+ if new_path.exists():
+ return new_path
+ return None
+
+
+def find_multifile_paths(path: Path) -> list[Path]:
+ '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
+ the whole list of paths in the model.
+ '''
+ ret: list[Path] = []
+ for i in itertools.count():
+ nth_path = nth_multifile_path(path, i)
+ if nth_path is None:
+ break
+ ret.append(nth_path)
+ if not ret:
+ # No matches. This should only happen if the file was named, e.g.,
+ # foo.0, and there was no file named foo. Oh well, try to process it
+ # as a single file.
+ return [path]
+ return ret
+
+
+def load_some_model(path: Path) -> ModelPlus:
+ '''Load a model of any supported format.'''
+ # Be extra-friendly and accept either a file or a directory:
+ if path.is_dir():
+ # Check if it's a set of safetensors files first
+ globs = ["model-00001-of-*.safetensors", "model.safetensors", "consolidated.safetensors"]
+ files = [file for glob in globs for file in path.glob(glob)]
+ if not files:
+ # Try the PyTorch patterns too, with lower priority
+ globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
+ files = [file for glob in globs for file in path.glob(glob)]
+ if not files:
+ raise FileNotFoundError(f"Can't find model in directory {path}")
+ if len(files) > 1:
+ raise ValueError(f"Found multiple models in {path}, not sure which to pick: {files}")
+ path = files[0]
+
+ paths = find_multifile_paths(path)
+ models_plus: list[ModelPlus] = []
+ for path in paths:
+ logger.info(f"Loading model file {path}")
+ models_plus.append(lazy_load_file(path))
+
+ model_plus = merge_multifile_models(models_plus)
+ return model_plus
+
+
+class VocabFactory:
+ _VOCAB_CLASSES: list[type[Vocab]] = [SentencePieceVocab, BpeVocab, LlamaHfVocab]
+
+ def __init__(self, path: Path):
+ self.path = path
+
+ def _create_special_vocab(self, vocab: BaseVocab, model_parent_path: Path) -> gguf.SpecialVocab:
+ load_merges = vocab.name == "bpe"
+ n_vocab = vocab.vocab_size if isinstance(vocab, Vocab) else None
+ return gguf.SpecialVocab(
+ model_parent_path,
+ load_merges=load_merges,
+ special_token_types=None, # Predetermined or passed as a parameter
+ n_vocab=n_vocab,
+ )
+
+ def _create_vocab_by_path(self, vocab_types: list[str]) -> Vocab:
+ vocab_classes: dict[str, type[Vocab]] = {cls.name: cls for cls in self._VOCAB_CLASSES}
+ selected_vocabs: dict[str, type[Vocab]] = {}
+ for vtype in vocab_types:
+ try:
+ selected_vocabs[vtype] = vocab_classes[vtype]
+ except KeyError:
+ raise ValueError(f"Unsupported vocabulary type {vtype}") from None
+
+ for vtype, cls in selected_vocabs.items():
+ try:
+ vocab = cls(self.path)
+ break
+ except FileNotFoundError:
+ pass # ignore unavailable tokenizers
+ else:
+ raise FileNotFoundError(f"Could not find a tokenizer matching any of {vocab_types}")
+
+ logger.info(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}")
+ return vocab
+
+ def load_vocab(self, vocab_types: list[str] | None, model_parent_path: Path) -> tuple[BaseVocab, gguf.SpecialVocab]:
+ vocab: BaseVocab
+ if vocab_types is None:
+ vocab = NoVocab()
+ else:
+ vocab = self._create_vocab_by_path(vocab_types)
+ # FIXME: Respect --vocab-dir?
+ special_vocab = self._create_special_vocab(
+ vocab,
+ model_parent_path,
+ )
+ return vocab, special_vocab
+
+
+def default_convention_outfile(file_type: GGMLFileType, expert_count: int | None, model_params_count: tuple[int, int, int], metadata: gguf.Metadata) -> str:
+ name = metadata.name if metadata.name is not None else None
+ basename = metadata.basename if metadata.basename is not None else None
+ finetune = metadata.finetune if metadata.finetune is not None else None
+ version = metadata.version if metadata.version is not None else None
+ size_label = metadata.size_label if metadata.size_label is not None else gguf.size_label(*model_params_count, expert_count=expert_count or 0)
+
+ output_type = {
+ GGMLFileType.AllF32: "F32",
+ GGMLFileType.MostlyF16: "F16",
+ GGMLFileType.MostlyQ8_0: "Q8_0",
+ }[file_type]
+
+ return gguf.naming_convention(name, basename, finetune, version, size_label, output_type)
+
+
+def default_outfile(model_paths: list[Path], file_type: GGMLFileType, expert_count: int | None, model_params_count: tuple[int, int, int], metadata: gguf.Metadata) -> Path:
+ default_filename = default_convention_outfile(file_type, expert_count, model_params_count, metadata)
+ ret = model_paths[0].parent / f"{default_filename}.gguf"
+ if ret in model_paths:
+ logger.error(
+ f"Error: Default output path ({ret}) would overwrite the input. "
+ "Please explicitly specify a path using --outfile.")
+ sys.exit(1)
+ return ret
+
+
+def do_dump_model(model_plus: ModelPlus) -> None:
+ print(f"model_plus.paths = {model_plus.paths!r}") # noqa: NP100
+ print(f"model_plus.format = {model_plus.format!r}") # noqa: NP100
+ print(f"model_plus.vocab = {model_plus.vocab!r}") # noqa: NP100
+ for name, lazy_tensor in model_plus.model.items():
+ print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") # noqa: NP100
+
+
+def main(args_in: list[str] | None = None) -> None:
+ output_choices = ["f32", "f16"]
+ if np.uint32(1) == np.uint32(1).newbyteorder("<"):
+ # We currently only support Q8_0 output on little endian systems.
+ output_choices.append("q8_0")
+ parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file")
+ parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
+ parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
+ parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
+ parser.add_argument("--no-vocab", action="store_true", help="store model without the vocab")
+ parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
+ parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
+ parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft")
+ parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
+ parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
+ parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
+ parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY)
+ parser.add_argument("--big-endian", action="store_true", help="model is executed on big endian machine")
+ parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
+ parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
+ parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
+ parser.add_argument("--metadata", type=Path, help="Specify the path for an authorship metadata override file")
+ parser.add_argument("--get-outfile", action="store_true", help="get calculated default outfile name")
+ parser.add_argument("--model-name", type=str, default=None, help="name of the model")
+
+ args = parser.parse_args(args_in)
+
+ if args.verbose:
+ logging.basicConfig(level=logging.DEBUG)
+ elif args.dump_single or args.dump or args.get_outfile:
+ # Avoid printing anything besides the dump output
+ logging.basicConfig(level=logging.WARNING)
+ else:
+ logging.basicConfig(level=logging.INFO)
+
+ model_name = args.model_name
+ dir_model = args.model
+
+ metadata = gguf.Metadata.load(args.metadata, dir_model, model_name)
+
+ if args.get_outfile:
+ model_plus = load_some_model(dir_model)
+ params = Params.load(model_plus)
+ model = convert_model_names(model_plus.model, params, args.skip_unknown)
+ model_params_count = per_model_weight_count_estimation(model_plus.model.items())
+ ftype = pick_output_type(model, args.outtype)
+
+ if (metadata is None or metadata.name is None) and params.path_model is not None:
+ metadata.name = params.path_model.name
+
+ print(f"{default_convention_outfile(ftype, params.n_experts, model_params_count, metadata)}") # noqa: NP100
+ return
+
+ if args.no_vocab and args.vocab_only:
+ raise ValueError("--vocab-only does not make sense with --no-vocab")
+
+ if args.dump_single:
+ model_plus = lazy_load_file(dir_model)
+ do_dump_model(model_plus)
+ return
+
+ if not args.vocab_only:
+ model_plus = load_some_model(dir_model)
+ else:
+ model_plus = ModelPlus(model = {}, paths = [dir_model / 'dummy'], format = 'none', vocab = None)
+
+ if args.dump:
+ do_dump_model(model_plus)
+ return
+
+ endianess = gguf.GGUFEndian.LITTLE
+ if args.big_endian:
+ endianess = gguf.GGUFEndian.BIG
+
+ params = None
+ if args.pad_vocab or not args.vocab_only:
+ params = Params.load(model_plus)
+ if params.n_ctx == -1:
+ if args.ctx is None:
+ msg = """\
+ The model doesn't have a context size, and you didn't specify one with --ctx
+ Please specify one with --ctx:
+ - LLaMA v1: --ctx 2048
+ - LLaMA v2: --ctx 4096"""
+ parser.error(textwrap.dedent(msg))
+ params.n_ctx = args.ctx
+
+ if args.outtype:
+ params.ftype = {
+ "f32": GGMLFileType.AllF32,
+ "f16": GGMLFileType.MostlyF16,
+ "q8_0": GGMLFileType.MostlyQ8_0,
+ }[args.outtype]
+
+ logger.info(f"params = {params}")
+
+ model_parent_path = model_plus.paths[0].parent
+ vocab_path = Path(args.vocab_dir or dir_model or model_parent_path)
+ vocab_factory = VocabFactory(vocab_path)
+ vocab_types = None if args.no_vocab else args.vocab_type.split(",")
+ vocab, special_vocab = vocab_factory.load_vocab(vocab_types, model_parent_path)
+
+ if args.vocab_only:
+ assert isinstance(vocab, Vocab)
+ if not args.outfile:
+ raise ValueError("need --outfile if using --vocab-only")
+ outfile = args.outfile
+ if params is None:
+ params = Params(
+ n_vocab = vocab.vocab_size,
+ n_embd = 1,
+ n_layer = 1,
+ n_ctx = 1,
+ n_ff = 1,
+ n_head = 1,
+ n_head_kv = 1,
+ f_norm_eps = 1e-5,
+ )
+ OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
+ endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata)
+ logger.info(f"Wrote {outfile}")
+ return
+
+ if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab:
+ vocab = model_plus.vocab
+
+ assert params is not None
+
+ if metadata.name is None and params.path_model is not None:
+ metadata.name = params.path_model.name
+
+ model_params_count = per_model_weight_count_estimation(model_plus.model.items())
+ logger.info(f"model parameters count : {model_params_count} ({gguf.model_weight_count_rounded_notation(model_params_count[0])})")
+
+ logger.info(f"Vocab info: {vocab}")
+ logger.info(f"Special vocab info: {special_vocab}")
+ model = model_plus.model
+ model = convert_model_names(model, params, args.skip_unknown)
+ ftype = pick_output_type(model, args.outtype)
+ model = convert_to_output_type(model, ftype)
+ outfile = args.outfile or default_outfile(model_plus.paths, ftype, params.n_experts, model_params_count, metadata=metadata)
+
+ metadata.size_label = gguf.size_label(*model_params_count, expert_count=params.n_experts or 0)
+
+ params.ftype = ftype
+ logger.info(f"Writing {outfile}, format {ftype}")
+
+ OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
+ concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata)
+ logger.info(f"Wrote {outfile}")
+
+
+if __name__ == '__main__':
+ main()