diff options
Diffstat (limited to 'examples/cvector-generator/pca.hpp')
-rw-r--r-- | examples/cvector-generator/pca.hpp | 322 |
1 files changed, 322 insertions, 0 deletions
diff --git a/examples/cvector-generator/pca.hpp b/examples/cvector-generator/pca.hpp new file mode 100644 index 00000000..8b95cec3 --- /dev/null +++ b/examples/cvector-generator/pca.hpp @@ -0,0 +1,322 @@ +#include "common.h" +#include "llama.h" +#include "ggml.h" + +#ifdef GGML_USE_CUDA +#include "ggml-cuda.h" +#endif + +#ifdef GGML_USE_METAL +#include "ggml-metal.h" +#endif + +#include <cstdio> +#include <ctime> +#include <string> +#include <tuple> +#include <vector> +#include <algorithm> +#include <iostream> +#include <fstream> + +#define DEBUG_POS 5 + +static void print_debug_tensor(struct ggml_tensor * t, bool with_data = true) { + printf("%s: %s (%s): [%d, %d]\n", __func__, t->name, ggml_type_name(t->type), (int) t->ne[0], (int) t->ne[1]); + if (!with_data) return; + printf("%s: %s[0] = [", __func__, t->name); + for (size_t i = 0; i <= DEBUG_POS; i++) { + printf(" %f,", ggml_get_f32_nd(t, i, 0, 0, 0)); + } + printf(" ... ]\n"); +} + +namespace PCA { + +// input params for PCA computations +struct pca_params { + int n_threads = 1; + int n_batch = 20; // number of iterations do to in one batch. larger the batch, more memory is used + int n_iterations = 1000; + float tolerance = 1e-7; + + // for debugging + int i_layer = 0; + int n_layers = 0; +}; + +// result from each iteration +struct pca_result { + struct ggml_tensor * calculated_square = NULL; + std::vector<struct ggml_tensor *> eigenvectors; + std::vector<float> distances; +}; + +struct pca_model { + ggml_backend_t backend = NULL; + ggml_backend_buffer_t buffer; + struct ggml_context * ctx; // context to compute graph on target device + struct ggml_context * ctx_host; // host context to store results + + // tensors on target device + struct ggml_tensor * dev_input; + struct ggml_tensor * dev_square; + struct ggml_tensor * dev_eigenvector; + + pca_model(struct ggml_tensor * t_input) { +// TODO: enable GPU support when support for GGML_OP_SQRT is added +// #ifdef GGML_USE_CUDA +// fprintf(stderr, "%s: using CUDA backend\n", __func__); +// backend = ggml_backend_cuda_init(0); // init device 0 +// if (!backend) { +// fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); +// } +// #endif + +// #ifdef GGML_USE_METAL +// fprintf(stderr, "%s: using Metal backend\n", __func__); +// backend = ggml_backend_metal_init(); +// if (!backend) { +// fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__); +// } +// #endif + + // if there aren't GPU Backends fallback to CPU backend + if (!backend) { + backend = ggml_backend_cpu_init(); + } + + const int num_tensors = 4; + struct ggml_init_params params { + /*.mem_size =*/ ggml_tensor_overhead() * num_tensors, + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + ctx = ggml_init(params); + + auto n_samples = t_input->ne[0]; + auto n_embd = t_input->ne[1]; + + dev_input = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_samples, n_embd); + dev_square = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); + dev_eigenvector = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + + ggml_set_name(dev_input, "dev_input"); + ggml_set_name(dev_square, "dev_square"); + ggml_set_name(dev_eigenvector, "dev_eigenvector"); + buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); + ggml_backend_tensor_set(dev_input, t_input->data, 0, ggml_nbytes(t_input)); + + // initialize eigenvector to random normalized vector + { + std::vector<float> random_vec(ggml_nelements(dev_eigenvector), 0.0); + std::default_random_engine generator(static_cast<unsigned int>(std::time(0))); + std::uniform_real_distribution<float> distribution(0.0, 1.0); + float sum_sqr = 0.0; // for normalizing random_vec + for (size_t i = 0; i < random_vec.size(); ++i) { + float f = distribution(generator); + sum_sqr += f * f; + random_vec[i] = f; + } + // normalize it + float random_vec_norm = std::sqrt(sum_sqr); + for (size_t i = 0; i < random_vec.size(); ++i) { + random_vec[i] /= random_vec_norm; + } + ggml_backend_tensor_set(dev_eigenvector, random_vec.data(), 0, ggml_nbytes(dev_eigenvector)); + } + } + + ~pca_model() { + ggml_free(ctx); + ggml_backend_buffer_free(buffer); + ggml_backend_free(backend); + } +}; + +static struct ggml_cgraph * build_graph_piter( + const struct pca_params & params, + const pca_model & model, + bool calc_square = false) { + GGML_ASSERT(params.n_batch > 0); + // TODO: buf_size must be able to scale with params.n_batch + static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(); + static std::vector<uint8_t> buf(buf_size); + + struct ggml_init_params params0 = { + /*.mem_size =*/ buf_size, + /*.mem_buffer =*/ buf.data(), + /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph() + }; + // create a temporally context to build the graph + struct ggml_context * ctx0 = ggml_init(params0); + struct ggml_cgraph * gf = ggml_new_graph(ctx0); + + // turn v_diff_original into square matrix if needed + struct ggml_tensor * tmp_square; + if (calc_square) { + tmp_square = ggml_mul_mat(ctx0, model.dev_input, model.dev_input); + ggml_set_name(tmp_square, "tmp_square"); + } + + struct ggml_tensor * b_tensor; + struct ggml_tensor * distance; + struct ggml_tensor * old_eigen = model.dev_eigenvector; + struct ggml_tensor * input_square = calc_square ? tmp_square : model.dev_square; + + for (int i = 0; i < params.n_batch; ++i) { + // b_tensor = square * eigenvector^T + b_tensor = ggml_mul_mat(ctx0, input_square, old_eigen); + ggml_set_name(b_tensor, "b_tensor"); + + // normalize + b_tensor = ggml_div_inplace(ctx0, + b_tensor, + ggml_sqrt_inplace(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, b_tensor))) + ); + ggml_format_name(b_tensor, "b_tensor_norm_%d", i); + + // calculate distance(new eigenvector - old eigenvector) + // we don't use ggml_sub because it may not be implemented on GPU backend + struct ggml_tensor * new_sub_old = ggml_add(ctx0, old_eigen, ggml_scale(ctx0, b_tensor, -1)); + distance = ggml_sqrt_inplace(ctx0, + ggml_sum_rows(ctx0, ggml_sqr_inplace(ctx0, new_sub_old))); + ggml_format_name(distance, "distance_%d", i); + + old_eigen = b_tensor; + + // build operations nodes + ggml_build_forward_expand(gf, distance); + } + + // delete the temporally context used to build the graph + ggml_free(ctx0); + return gf; +} + +static ggml_status compute_piter( + const struct pca_params & params, + const pca_model & model, + struct ggml_cgraph * gf, + ggml_gallocr_t allocr, + struct pca_result & result) { + // allocate tensors + ggml_gallocr_alloc_graph(allocr, gf); + + if (ggml_backend_is_cpu(model.backend)) { + ggml_backend_cpu_set_n_threads(model.backend, params.n_threads); + } + +// TODO: enable GPU support when support for GGML_OP_SQRT is added +//#ifdef GGML_USE_METAL +// if (ggml_backend_is_metal(model.backend)) { +// ggml_backend_metal_set_n_cb(model.backend, params.n_threads); +// } +//#endif + + ggml_status res = ggml_backend_graph_compute(model.backend, gf); + if (res == GGML_STATUS_SUCCESS) { + auto extract_i = [](std::string prefix, std::string str) -> int { + int i = -1; + if (str.rfind(prefix, 0) == 0) { + sscanf(str.c_str(), (prefix + "%d").c_str(), &i); + } + return i; + }; + result.calculated_square = NULL; + result.eigenvectors.clear(); + result.distances.clear(); + result.eigenvectors.resize(params.n_batch); + result.distances.resize(params.n_batch); + // get output nodes + for (int i = 0; i < gf->n_nodes; ++i) { + auto node = gf->nodes[i]; + int iter = -1; + // find b_tensor (without copying data from device) + if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) { + result.eigenvectors[iter] = node; + } + // find distances, then copy data from device + if ((iter = extract_i("distance_", node->name)) > -1) { + float d; + ggml_backend_tensor_get(node, &d, 0, sizeof(float)); + result.distances[iter] = d; + // std::cout << node->name << " = " << d << "\n"; + } + // find tmp_square if it exists (without copying data from device) + if (std::string(node->name) == "tmp_square") { + result.calculated_square = node; + } + } + } + return res; +} + +static void power_iteration( + const struct pca_params & params, + struct ggml_tensor * input, // shape of input: [n_samples, n_embd] + struct ggml_tensor * output) { + //printf("in power iteration\n"); + struct pca_model model(input); + + ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend)); + struct pca_result result; + struct ggml_tensor * last_eigenvector = NULL; + + int n_iters = params.n_iterations / params.n_batch; // more batch, fewer iterations + for (int iter = 0; iter < n_iters; ++iter) { + bool calc_square = (iter == 0); // only need to calculate square for first iteration + struct ggml_cgraph * gf = build_graph_piter(params, model, calc_square); + // ggml_graph_dump_dot(gf, nullptr, "/tmp/_cgraph.dot"); + compute_piter(params, model, gf, allocr, result); + + for (size_t k = 0; k < result.distances.size(); ++k) { + last_eigenvector = result.eigenvectors[k]; + if (result.distances[k] < params.tolerance) { + break; // done + } + } + + if (calc_square) { + // copy and store the square matrix if needed + GGML_ASSERT(result.calculated_square != NULL); + ggml_backend_tensor_copy(result.calculated_square, model.dev_square); + } + + { + // copy last eigen vector and store as input for next iteration + GGML_ASSERT(last_eigenvector != NULL); + ggml_backend_tensor_copy(last_eigenvector, model.dev_eigenvector); + } + + printf("%s: layer %d/%d, iteration: %d / total: %d (batch = %d) ...\n", + __func__, params.i_layer+1, params.n_layers, iter, n_iters, params.n_batch); + } + + // get output tensor + GGML_ASSERT(last_eigenvector); + ggml_backend_tensor_get(last_eigenvector, output->data, 0, ggml_nbytes(last_eigenvector)); + //print_debug_tensor(output); + ggml_gallocr_free(allocr); +} + +static void run_pca( + struct pca_params & params, + const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_samples, n_embd] + const std::vector<struct ggml_tensor *> & v_output) { + printf("%s: Running PCA...\n", __func__); + for (size_t il = 0; il < v_input.size(); ++il) { + + // prepare output vector + struct ggml_tensor * ctrl_out = v_output[il]; + ggml_format_name(ctrl_out, "direction.%ld", il+1); + + // run power_iteration + params.i_layer = il; + params.n_layers = v_input.size(); + power_iteration(params, v_input[il], ctrl_out); + printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size()); + } +} + +} |