summaryrefslogtreecommitdiff
path: root/examples/embedding/embedding.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/embedding/embedding.cpp')
-rw-r--r--examples/embedding/embedding.cpp148
1 files changed, 102 insertions, 46 deletions
diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp
index 1466e5b2..b05aa006 100644
--- a/examples/embedding/embedding.cpp
+++ b/examples/embedding/embedding.cpp
@@ -31,13 +31,24 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
}
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
+ const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
+ const struct llama_model * model = llama_get_model(ctx);
+
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
// run model
fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
- if (llama_decode(ctx, batch) < 0) {
- fprintf(stderr, "%s : failed to decode\n", __func__);
+ if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) {
+ // encoder-only model
+ if (llama_encode(ctx, batch) < 0) {
+ fprintf(stderr, "%s : failed to encode\n", __func__);
+ }
+ } else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
+ // decoder-only model
+ if (llama_decode(ctx, batch) < 0) {
+ fprintf(stderr, "%s : failed to decode\n", __func__);
+ }
}
for (int i = 0; i < batch.n_tokens; i++) {
@@ -45,11 +56,22 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
continue;
}
- // try to get sequence embeddings - supported only when pooling_type is not NONE
- const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
- GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
+ const float * embd = nullptr;
+ int embd_pos = 0;
+
+ if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
+ // try to get token embeddings
+ embd = llama_get_embeddings_ith(ctx, i);
+ embd_pos = i;
+ GGML_ASSERT(embd != NULL && "failed to get token embeddings");
+ } else {
+ // try to get sequence embeddings - supported only when pooling_type is not NONE
+ embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
+ embd_pos = batch.seq_id[i][0];
+ GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
+ }
- float * out = output + batch.seq_id[i][0] * n_embd;
+ float * out = output + embd_pos * n_embd;
llama_embd_normalize(embd, out, n_embd, embd_norm);
}
}
@@ -79,11 +101,11 @@ int main(int argc, char ** argv) {
llama_backend_init();
llama_numa_init(params.numa);
- llama_model * model;
- llama_context * ctx;
-
// load the model
- std::tie(model, ctx) = llama_init_from_gpt_params(params);
+ llama_init_result llama_init = llama_init_from_gpt_params(params);
+
+ llama_model * model = llama_init.model;
+ llama_context * ctx = llama_init.context;
if (model == NULL) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
return 1;
@@ -93,8 +115,9 @@ int main(int argc, char ** argv) {
const int n_ctx = llama_n_ctx(ctx);
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
- if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
- fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__);
+
+ if (llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
+ fprintf(stderr, "%s: error: computing embeddings in encoder-decoder models is not supported\n", __func__);
return 1;
}
@@ -153,13 +176,23 @@ int main(int argc, char ** argv) {
const int n_prompts = prompts.size();
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
+ // count number of embeddings
+ int n_embd_count = 0;
+ if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
+ for (int k = 0; k < n_prompts; k++) {
+ n_embd_count += inputs[k].size();
+ }
+ } else {
+ n_embd_count = n_prompts;
+ }
+
// allocate output
const int n_embd = llama_n_embd(model);
- std::vector<float> embeddings(n_prompts * n_embd, 0);
+ std::vector<float> embeddings(n_embd_count * n_embd, 0);
float * emb = embeddings.data();
// break into batches
- int p = 0; // number of prompts processed already
+ int e = 0; // number of embeddings already stored
int s = 0; // number of prompts in current batch
for (int k = 0; k < n_prompts; k++) {
// clamp to n_batch tokens
@@ -169,11 +202,11 @@ int main(int argc, char ** argv) {
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch) {
- float * out = emb + p * n_embd;
+ float * out = emb + e * n_embd;
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
- llama_batch_clear(batch);
- p += s;
+ e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s;
s = 0;
+ llama_batch_clear(batch);
}
// add to batch
@@ -182,39 +215,62 @@ int main(int argc, char ** argv) {
}
// final batch
- float * out = emb + p * n_embd;
+ float * out = emb + e * n_embd;
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
if (params.embd_out.empty()) {
- // print the first part of the embeddings or for a single prompt, the full embedding
fprintf(stdout, "\n");
- for (int j = 0; j < n_prompts; j++) {
- fprintf(stdout, "embedding %d: ", j);
- for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
- if (params.embd_normalize == 0) {
- fprintf(stdout, "%6.0f ", emb[j * n_embd + i]);
- } else {
- fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
+
+ if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
+ for (int j = 0; j < n_embd_count; j++) {
+ fprintf(stdout, "embedding %d: ", j);
+ for (int i = 0; i < std::min(3, n_embd); i++) {
+ if (params.embd_normalize == 0) {
+ fprintf(stdout, "%6.0f ", emb[j * n_embd + i]);
+ } else {
+ fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
+ }
+ }
+ fprintf(stdout, " ... ");
+ for (int i = n_embd - 3; i < n_embd; i++) {
+ if (params.embd_normalize == 0) {
+ fprintf(stdout, "%6.0f ", emb[j * n_embd + i]);
+ } else {
+ fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
+ }
}
+ fprintf(stdout, "\n");
}
- fprintf(stdout, "\n");
- }
-
- // print cosine similarity matrix
- if (n_prompts > 1) {
- fprintf(stdout, "\n");
- printf("cosine similarity matrix:\n\n");
- for (int i = 0; i < n_prompts; i++) {
- fprintf(stdout, "%6.6s ", prompts[i].c_str());
+ } else {
+ // print the first part of the embeddings or for a single prompt, the full embedding
+ for (int j = 0; j < n_prompts; j++) {
+ fprintf(stdout, "embedding %d: ", j);
+ for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
+ if (params.embd_normalize == 0) {
+ fprintf(stdout, "%6.0f ", emb[j * n_embd + i]);
+ } else {
+ fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
+ }
+ }
+ fprintf(stdout, "\n");
}
- fprintf(stdout, "\n");
- for (int i = 0; i < n_prompts; i++) {
- for (int j = 0; j < n_prompts; j++) {
- float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
- fprintf(stdout, "%6.2f ", sim);
+
+ // print cosine similarity matrix
+ if (n_prompts > 1) {
+ fprintf(stdout, "\n");
+ printf("cosine similarity matrix:\n\n");
+ for (int i = 0; i < n_prompts; i++) {
+ fprintf(stdout, "%6.6s ", prompts[i].c_str());
}
- fprintf(stdout, "%1.10s", prompts[i].c_str());
fprintf(stdout, "\n");
+ for (int i = 0; i < n_prompts; i++) {
+ for (int j = 0; j < n_prompts; j++) {
+ float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
+ fprintf(stdout, "%6.2f ", sim);
+ }
+ fprintf(stdout, "%1.10s", prompts[i].c_str());
+ fprintf(stdout, "\n");
+ }
}
}
}
@@ -233,23 +289,23 @@ int main(int argc, char ** argv) {
}
fprintf(stdout, notArray ? "]\n }" : "]");
j++;
- if (j < n_prompts) fprintf(stdout, notArray ? ",\n" : ","); else break;
+ if (j < n_embd_count) fprintf(stdout, notArray ? ",\n" : ","); else break;
}
fprintf(stdout, notArray ? "\n ]" : "]\n");
if (params.embd_out == "json+" && n_prompts > 1) {
fprintf(stdout, ",\n \"cosineSimilarity\": [\n");
- for (int i = 0;;) { // at least two iteration (n_prompts > 1)
+ for (int i = 0;;) { // at least two iteration (n_embd_count > 1)
fprintf(stdout, " [");
- for (int j = 0;;) { // at least two iteration (n_prompts > 1)
+ for (int j = 0;;) { // at least two iteration (n_embd_count > 1)
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
fprintf(stdout, "%6.2f", sim);
j++;
- if (j < n_prompts) fprintf(stdout, ", "); else break;
+ if (j < n_embd_count) fprintf(stdout, ", "); else break;
}
fprintf(stdout, " ]");
i++;
- if (i < n_prompts) fprintf(stdout, ",\n"); else break;
+ if (i < n_embd_count) fprintf(stdout, ",\n"); else break;
}
fprintf(stdout, "\n ]");
}