summaryrefslogtreecommitdiff
path: root/examples/finetune/README.md
diff options
context:
space:
mode:
Diffstat (limited to 'examples/finetune/README.md')
-rw-r--r--examples/finetune/README.md90
1 files changed, 90 insertions, 0 deletions
diff --git a/examples/finetune/README.md b/examples/finetune/README.md
new file mode 100644
index 00000000..b7347c20
--- /dev/null
+++ b/examples/finetune/README.md
@@ -0,0 +1,90 @@
+# finetune
+
+Basic usage instructions:
+
+```bash
+# get training data
+wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt
+
+# finetune LORA adapter
+./bin/finetune \
+ --model-base open-llama-3b-v2-q8_0.gguf \
+ --checkpoint-in chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf \
+ --checkpoint-out chk-lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.gguf \
+ --lora-out lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.bin \
+ --train-data "shakespeare.txt" \
+ --save-every 10 \
+ --threads 6 --adam-iter 30 --batch 4 --ctx 64 \
+ --use-checkpointing
+
+# predict
+./bin/main -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
+```
+
+Finetune output files will be saved every N iterations (config with `--save-every N`).
+The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output.
+So in above example after 10 iterations these files will be written:
+- chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf
+- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
+- lora-open-llama-3b-v2-q8_0-shakespeare-10.bin
+- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
+
+After 10 more iterations:
+- chk-lora-open-llama-3b-v2-q8_0-shakespeare-20.gguf
+- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
+- lora-open-llama-3b-v2-q8_0-shakespeare-20.bin
+- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
+
+Checkpoint files (`--checkpoint-in FN`, `--checkpoint-out FN`) store the training process. When the input checkpoint file does not exist, it will begin finetuning a new randomly initialized adapter.
+
+llama.cpp compatible LORA adapters will be saved with filename specified by `--lora-out FN`.
+These LORA adapters can then be used by `main` together with the base model, like in the 'predict' example command above.
+
+In `main` you can also load multiple LORA adapters, which will then be mixed together.
+
+For example if you have two LORA adapters `lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin` and `lora-open-llama-3b-v2-q8_0-bible-LATEST.bin`, you can mix them together like this:
+
+```bash
+./bin/main -m open-llama-3b-v2-q8_0.gguf \
+ --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin \
+ --lora lora-open-llama-3b-v2-q8_0-bible-LATEST.bin
+```
+
+You can change how strong each LORA adapter is applied to the base model by using `--lora-scaled FN SCALE` instead of `--lora FN`.
+
+For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' LORA adapter and 100% of yet another one:
+
+```bash
+./bin/main -m open-llama-3b-v2-q8_0.gguf \
+ --lora-scaled lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin 0.4 \
+ --lora-scaled lora-open-llama-3b-v2-q8_0-bible-LATEST.bin 0.8 \
+ --lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin
+```
+
+The scale numbers don't need to add up to one, and you can also use numbers creater than 1 to further increase the influence of an adapter. But making the values to big will sometimes result in worse output. Play around to find good values.
+
+Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
+If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.
+
+The default LORA rank can be specified with `--lora-r N`.
+The LORA rank can be configured for each model tensor type separately with these command line options:
+
+```bash
+ --lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default 4)
+ --rank-att-norm N LORA rank for attention norm tensor (default 1)
+ --rank-ffn-norm N LORA rank for feed-forward norm tensor (default 1)
+ --rank-out-norm N LORA rank for output norm tensor (default 1)
+ --rank-tok-embd N LORA rank for token embeddings tensor (default 4)
+ --rank-out N LORA rank for output tensor (default 4)
+ --rank-wq N LORA rank for wq tensor (default 4)
+ --rank-wk N LORA rank for wk tensor (default 4)
+ --rank-wv N LORA rank for wv tensor (default 4)
+ --rank-wo N LORA rank for wo tensor (default 4)
+ --rank-w1 N LORA rank for w1 tensor (default 4)
+ --rank-w2 N LORA rank for w2 tensor (default 4)
+ --rank-w3 N LORA rank for w3 tensor (default 4)
+```
+
+The LORA rank of 'norm' tensors should always be 1.
+
+To see all available options use `finetune --help`.