diff options
Diffstat (limited to 'examples/finetune/finetune.cpp')
-rw-r--r-- | examples/finetune/finetune.cpp | 145 |
1 files changed, 37 insertions, 108 deletions
diff --git a/examples/finetune/finetune.cpp b/examples/finetune/finetune.cpp index b7e19c5f..b11c5602 100644 --- a/examples/finetune/finetune.cpp +++ b/examples/finetune/finetune.cpp @@ -1,5 +1,6 @@ #include "ggml.h" #include "ggml-alloc.h" +#include "ggml-backend.h" #include "llama.h" #include "common.h" #include "train.h" @@ -13,8 +14,6 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif -static const size_t tensor_alignment = 32; - struct my_llama_hparams { uint32_t n_vocab = 32000; uint32_t n_ctx = 512; @@ -128,7 +127,7 @@ struct my_llama_lora_layer { struct my_llama_lora { struct ggml_context * ctx = NULL; - std::vector<uint8_t> data; + ggml_backend_buffer_t data; my_llama_lora_hparams hparams; @@ -372,63 +371,6 @@ static void set_param_lora(struct my_llama_lora * lora) { } } -static void alloc_lora(struct ggml_allocr * alloc, struct my_llama_lora * lora) { - ggml_allocr_alloc(alloc, lora->tok_embeddings_a); - ggml_allocr_alloc(alloc, lora->tok_embeddings_b); - ggml_allocr_alloc(alloc, lora->norm_a); - ggml_allocr_alloc(alloc, lora->norm_b); - ggml_allocr_alloc(alloc, lora->output_a); - ggml_allocr_alloc(alloc, lora->output_b); - for (uint32_t i = 0; i < lora->layers.size(); ++i) { - auto & layer = lora->layers[i]; - ggml_allocr_alloc(alloc, layer.attention_norm_a); - ggml_allocr_alloc(alloc, layer.attention_norm_b); - ggml_allocr_alloc(alloc, layer.wq_a); - ggml_allocr_alloc(alloc, layer.wq_b); - ggml_allocr_alloc(alloc, layer.wk_a); - ggml_allocr_alloc(alloc, layer.wk_b); - ggml_allocr_alloc(alloc, layer.wv_a); - ggml_allocr_alloc(alloc, layer.wv_b); - ggml_allocr_alloc(alloc, layer.wo_a); - ggml_allocr_alloc(alloc, layer.wo_b); - ggml_allocr_alloc(alloc, layer.ffn_norm_a); - ggml_allocr_alloc(alloc, layer.ffn_norm_b); - ggml_allocr_alloc(alloc, layer.w1_a); - ggml_allocr_alloc(alloc, layer.w1_b); - ggml_allocr_alloc(alloc, layer.w2_a); - ggml_allocr_alloc(alloc, layer.w2_b); - ggml_allocr_alloc(alloc, layer.w3_a); - ggml_allocr_alloc(alloc, layer.w3_b); - } - ggml_allocr_alloc(alloc, lora->tok_embeddings_a->grad); - ggml_allocr_alloc(alloc, lora->tok_embeddings_b->grad); - ggml_allocr_alloc(alloc, lora->norm_a->grad); - ggml_allocr_alloc(alloc, lora->norm_b->grad); - ggml_allocr_alloc(alloc, lora->output_a->grad); - ggml_allocr_alloc(alloc, lora->output_b->grad); - for (uint32_t i = 0; i < lora->layers.size(); ++i) { - auto & layer = lora->layers[i]; - ggml_allocr_alloc(alloc, layer.attention_norm_a->grad); - ggml_allocr_alloc(alloc, layer.attention_norm_b->grad); - ggml_allocr_alloc(alloc, layer.wq_a->grad); - ggml_allocr_alloc(alloc, layer.wq_b->grad); - ggml_allocr_alloc(alloc, layer.wk_a->grad); - ggml_allocr_alloc(alloc, layer.wk_b->grad); - ggml_allocr_alloc(alloc, layer.wv_a->grad); - ggml_allocr_alloc(alloc, layer.wv_b->grad); - ggml_allocr_alloc(alloc, layer.wo_a->grad); - ggml_allocr_alloc(alloc, layer.wo_b->grad); - ggml_allocr_alloc(alloc, layer.ffn_norm_a->grad); - ggml_allocr_alloc(alloc, layer.ffn_norm_b->grad); - ggml_allocr_alloc(alloc, layer.w1_a->grad); - ggml_allocr_alloc(alloc, layer.w1_b->grad); - ggml_allocr_alloc(alloc, layer.w2_a->grad); - ggml_allocr_alloc(alloc, layer.w2_b->grad); - ggml_allocr_alloc(alloc, layer.w3_a->grad); - ggml_allocr_alloc(alloc, layer.w3_b->grad); - } -} - static void init_lora(const struct my_llama_model * model, struct my_llama_lora * lora) { const auto & lparams = lora->hparams; @@ -522,18 +464,8 @@ static void init_lora(const struct my_llama_model * model, struct my_llama_lora set_param_lora(lora); - // measure data size - size_t size = 0; - for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { - size += GGML_PAD(ggml_nbytes(t), tensor_alignment); - } - - // allocate data - struct ggml_allocr * alloc = NULL; - lora->data.resize(size + tensor_alignment); - alloc = ggml_allocr_new(lora->data.data(), lora->data.size(), tensor_alignment); - alloc_lora(alloc, lora); - ggml_allocr_free(alloc); + // allocate data for lora tensors + lora->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type()); } static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, float std, float min, float max) { @@ -579,7 +511,7 @@ static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, fl static struct ggml_tensor * llama_build_lora_finetune_graphs( struct my_llama_model * model, struct my_llama_lora * lora, - struct ggml_allocr * alloc, + ggml_gallocr_t alloc, struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, @@ -590,7 +522,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( const int n_tokens, const int n_batch, const bool enable_flash_attn, - const bool enable_checkpointing) { + const bool enable_checkpointing, + const bool measure_only) { ggml_set_scratch(ctx, { 0, 0, nullptr, }); const int n_past = 0; @@ -622,13 +555,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( // KQ_pos - contains the positions struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N); - ggml_allocr_alloc(alloc, KQ_pos); - if (!ggml_allocr_is_measure(alloc)) { - int * data = (int *) KQ_pos->data; - for (int i = 0; i < N; ++i) { - data[i] = n_past + i; - } - } + ggml_set_input(KQ_pos); // rope has so much parameters that we make a custom function for it auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale] @@ -780,7 +707,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( // input gradient ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f)); GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL); - ggml_allocr_alloc(alloc, t36->grad); + ggml_set_input(t36->grad); // KQ_pos ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f)); @@ -805,11 +732,23 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( // note: they will be freed in reverse order for (unsigned int i = 0; i < checkpoints.size(); ++i) { if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) { - ggml_allocr_alloc(alloc, checkpoints[i]); + ggml_set_input(checkpoints[i]); } } - ggml_allocr_alloc_graph(alloc, gb); + if (measure_only) { + ggml_gallocr_reserve(alloc, gb); + } else { + ggml_gallocr_alloc_graph(alloc, gb); + + // set KQ_pos + { + int * data = (int *) KQ_pos->data; + for (int i = 0; i < N; ++i) { + data[i] = n_past + i; + } + } + } // remove the additional nodes and leafs for (int i = n_leafs_before; i < gb->n_leafs; ++i) { @@ -1663,7 +1602,7 @@ int main(int argc, char ** argv) { printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples); printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens); printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs); - printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + lora.data.size()), (float) (ggml_used_mem(lora.ctx) + lora.data.size()) / (1024.0f*1024.0f)); + printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)), (float) (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)) / (1024.0f*1024.0f)); if (params.only_write_lora) { save_train_files_data save_data; @@ -1690,10 +1629,6 @@ int main(int argc, char ** argv) { int n_vocab = model.hparams.n_vocab; int n_batch = params.common.n_batch; - - std::vector<uint8_t> mem_input_data; - std::vector<uint8_t> mem_compute_data; - // context for input tensors without their data struct ggml_init_params ctx_input_params = { ggml_tensor_overhead() * 2, // mem_size @@ -1706,18 +1641,12 @@ int main(int argc, char ** argv) { struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch); struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); + // allocate input tensors // measure required memory for input tensors - size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) + - GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) + - tensor_alignment; + ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type()); + size_t max_input_size = ggml_backend_buffer_get_size(input_data); printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f)); - // allocate input tensors - mem_input_data.resize(max_input_size); - ggml_allocr_t alloc_inps = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment); - ggml_allocr_alloc(alloc_inps, tokens_input); - ggml_allocr_alloc(alloc_inps, target_probs); - // context for compute tensors without their data const size_t estimated_compute_size_wo_data = ( 2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() + @@ -1743,7 +1672,7 @@ int main(int argc, char ** argv) { // find best evaluation order for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) { ctx_compute = ggml_init(ctx_compute_params); - ggml_allocr_t alloc = ggml_allocr_new_measure(tensor_alignment); + ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type()); gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); gf->order = (enum ggml_cgraph_eval_order) order; gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); @@ -1756,14 +1685,15 @@ int main(int argc, char ** argv) { &logits, tokens_input, target_probs, n_tokens, n_batch, params.common.use_flash, - params.common.use_checkpointing + params.common.use_checkpointing, + true ); - size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment; + size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer if (max_compute_size < best_compute_size) { best_compute_size = max_compute_size; best_order = gf->order; } - ggml_allocr_free(alloc); + ggml_gallocr_free(alloc); ggml_free(ctx_compute); } size_t max_compute_size = best_compute_size; @@ -1774,9 +1704,8 @@ int main(int argc, char ** argv) { "invalid"); // allocate compute tensors - mem_compute_data.resize(max_compute_size); ctx_compute = ggml_init(ctx_compute_params); - ggml_allocr_t alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment); + ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type()); gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); gf->order = best_order; gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); @@ -1789,11 +1718,9 @@ int main(int argc, char ** argv) { &logits, tokens_input, target_probs, n_tokens, n_batch, params.common.use_flash, - params.common.use_checkpointing + params.common.use_checkpointing, + false ); - ggml_allocr_free(alloc); - ggml_allocr_free(alloc_inps); - // tokenize data std::vector<llama_token> train_tokens; @@ -1908,6 +1835,8 @@ int main(int argc, char ** argv) { ggml_free(ctx_work); ggml_free(ctx_compute); ggml_free(ctx_input); + ggml_gallocr_free(alloc); + int64_t t1 = ggml_time_ms(); printf("%s: total training time: ", __func__); |