summaryrefslogtreecommitdiff
path: root/examples/gguf/gguf.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/gguf/gguf.cpp')
-rw-r--r--examples/gguf/gguf.cpp246
1 files changed, 246 insertions, 0 deletions
diff --git a/examples/gguf/gguf.cpp b/examples/gguf/gguf.cpp
new file mode 100644
index 00000000..dee00df8
--- /dev/null
+++ b/examples/gguf/gguf.cpp
@@ -0,0 +1,246 @@
+#include "ggml.h"
+#include "llama.h"
+
+#include <cstdio>
+#include <cinttypes>
+#include <string>
+#include <sstream>
+#include <fstream>
+#include <vector>
+
+#undef MIN
+#undef MAX
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+
+template<typename T>
+static std::string to_string(const T & val) {
+ std::stringstream ss;
+ ss << val;
+ return ss.str();
+}
+
+bool gguf_ex_write(const std::string & fname) {
+ struct gguf_context * ctx = gguf_init_empty();
+
+ gguf_set_val_u8 (ctx, "some.parameter.uint8", 0x12);
+ gguf_set_val_i8 (ctx, "some.parameter.int8", -0x13);
+ gguf_set_val_u16 (ctx, "some.parameter.uint16", 0x1234);
+ gguf_set_val_i16 (ctx, "some.parameter.int16", -0x1235);
+ gguf_set_val_u32 (ctx, "some.parameter.uint32", 0x12345678);
+ gguf_set_val_i32 (ctx, "some.parameter.int32", -0x12345679);
+ gguf_set_val_f32 (ctx, "some.parameter.float32", 0.123456789f);
+ gguf_set_val_bool(ctx, "some.parameter.bool", true);
+ gguf_set_val_str (ctx, "some.parameter.string", "hello world");
+
+ gguf_set_arr_data(ctx, "some.parameter.arr.i16", GGUF_TYPE_INT16, std::vector<int16_t>{ 1, 2, 3, 4, }.data(), 4);
+ gguf_set_arr_data(ctx, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, std::vector<float>{ 3.145f, 2.718f, 1.414f, }.data(), 3);
+ gguf_set_arr_str (ctx, "some.parameter.arr.str", std::vector<const char *>{ "hello", "world", "!" }.data(), 3);
+
+ struct ggml_init_params params = {
+ /*.mem_size =*/ 128ull*1024ull*1024ull,
+ /*.mem_buffer =*/ NULL,
+ /*.no_alloc =*/ false,
+ };
+
+ struct ggml_context * ctx_data = ggml_init(params);
+
+ const int n_tensors = 10;
+
+ // tensor infos
+ for (int i = 0; i < n_tensors; ++i) {
+ const std::string name = "tensor_" + to_string(i);
+
+ int64_t ne[GGML_MAX_DIMS] = { 1 };
+ int32_t n_dims = rand() % GGML_MAX_DIMS + 1;
+
+ for (int j = 0; j < n_dims; ++j) {
+ ne[j] = rand() % 10 + 1;
+ }
+
+ struct ggml_tensor * cur = ggml_new_tensor(ctx_data, GGML_TYPE_F32, n_dims, ne);
+ ggml_set_name(cur, name.c_str());
+
+ {
+ float * data = (float *) cur->data;
+ for (int j = 0; j < ggml_nelements(cur); ++j) {
+ data[j] = 100 + i;
+ }
+ }
+
+ gguf_add_tensor(ctx, cur);
+ }
+
+ gguf_write_to_file(ctx, fname.c_str(), false);
+
+ fprintf(stdout, "%s: wrote file '%s;\n", __func__, fname.c_str());
+
+ ggml_free(ctx_data);
+ gguf_free(ctx);
+
+ return true;
+}
+
+// just read tensor info
+bool gguf_ex_read_0(const std::string & fname) {
+ struct gguf_init_params params = {
+ /*.no_alloc = */ false,
+ /*.ctx = */ NULL,
+ };
+
+ struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
+
+ fprintf(stdout, "%s: version: %d\n", __func__, gguf_get_version(ctx));
+ fprintf(stdout, "%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
+ fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
+
+ // kv
+ {
+ const int n_kv = gguf_get_n_kv(ctx);
+
+ fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
+
+ for (int i = 0; i < n_kv; ++i) {
+ const char * key = gguf_get_key(ctx, i);
+
+ fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
+ }
+ }
+
+ // find kv string
+ {
+ const char * findkey = "some.parameter.string";
+
+ const int keyidx = gguf_find_key(ctx, findkey);
+ if (keyidx == -1) {
+ fprintf(stdout, "%s: find key: %s not found.\n", __func__, findkey);
+ } else {
+ const char * key_value = gguf_get_val_str(ctx, keyidx);
+ fprintf(stdout, "%s: find key: %s found, kv[%d] value = %s\n", __func__, findkey, keyidx, key_value);
+ }
+ }
+
+ // tensor info
+ {
+ const int n_tensors = gguf_get_n_tensors(ctx);
+
+ fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
+
+ for (int i = 0; i < n_tensors; ++i) {
+ const char * name = gguf_get_tensor_name (ctx, i);
+ const size_t offset = gguf_get_tensor_offset(ctx, i);
+
+ fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
+ }
+ }
+
+ gguf_free(ctx);
+
+ return true;
+}
+
+// read and create ggml_context containing the tensors and their data
+bool gguf_ex_read_1(const std::string & fname) {
+ struct ggml_context * ctx_data = NULL;
+
+ struct gguf_init_params params = {
+ /*.no_alloc = */ false,
+ /*.ctx = */ &ctx_data,
+ };
+
+ struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
+
+ fprintf(stdout, "%s: version: %d\n", __func__, gguf_get_version(ctx));
+ fprintf(stdout, "%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
+ fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
+
+ // kv
+ {
+ const int n_kv = gguf_get_n_kv(ctx);
+
+ fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
+
+ for (int i = 0; i < n_kv; ++i) {
+ const char * key = gguf_get_key(ctx, i);
+
+ fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
+ }
+ }
+
+ // tensor info
+ {
+ const int n_tensors = gguf_get_n_tensors(ctx);
+
+ fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
+
+ for (int i = 0; i < n_tensors; ++i) {
+ const char * name = gguf_get_tensor_name (ctx, i);
+ const size_t offset = gguf_get_tensor_offset(ctx, i);
+
+ fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
+ }
+ }
+
+ // data
+ {
+ const int n_tensors = gguf_get_n_tensors(ctx);
+
+ for (int i = 0; i < n_tensors; ++i) {
+ fprintf(stdout, "%s: reading tensor %d data\n", __func__, i);
+
+ const char * name = gguf_get_tensor_name(ctx, i);
+
+ struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
+
+ fprintf(stdout, "%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, cur->n_dims, cur->name, cur->data);
+
+ // print first 10 elements
+ const float * data = (const float *) cur->data;
+
+ printf("%s data[:10] : ", name);
+ for (int j = 0; j < MIN(10, ggml_nelements(cur)); ++j) {
+ printf("%f ", data[j]);
+ }
+ printf("\n\n");
+
+ // check data
+ {
+ const float * data = (const float *) cur->data;
+ for (int j = 0; j < ggml_nelements(cur); ++j) {
+ if (data[j] != 100 + i) {
+ fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
+ return false;
+ }
+ }
+ }
+ }
+ }
+
+ fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
+
+ ggml_free(ctx_data);
+ gguf_free(ctx);
+
+ return true;
+}
+
+int main(int argc, char ** argv) {
+ if (argc < 3) {
+ fprintf(stdout, "usage: %s data.gguf r|w\n", argv[0]);
+ return -1;
+ }
+
+ const std::string fname(argv[1]);
+ const std::string mode (argv[2]);
+
+ GGML_ASSERT((mode == "r" || mode == "w") && "mode must be r or w");
+
+ if (mode == "w") {
+ GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file");
+ } else if (mode == "r") {
+ GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file");
+ GGML_ASSERT(gguf_ex_read_1(fname) && "failed to read gguf file");
+ }
+
+ return 0;
+}