diff options
Diffstat (limited to 'examples/json_schema_pydantic_example.py')
-rw-r--r-- | examples/json_schema_pydantic_example.py | 82 |
1 files changed, 82 insertions, 0 deletions
diff --git a/examples/json_schema_pydantic_example.py b/examples/json_schema_pydantic_example.py new file mode 100644 index 00000000..19c0bdb5 --- /dev/null +++ b/examples/json_schema_pydantic_example.py @@ -0,0 +1,82 @@ +# Usage: +#! ./llama-server -m some-model.gguf & +#! pip install pydantic +#! python json_schema_pydantic_example.py + +from pydantic import BaseModel, Field, TypeAdapter +from annotated_types import MinLen +from typing import Annotated, List, Optional +import json, requests + +if True: + + def create_completion(*, response_model=None, endpoint="http://localhost:8080/v1/chat/completions", messages, **kwargs): + ''' + Creates a chat completion using an OpenAI-compatible endpoint w/ JSON schema support + (llama.cpp server, llama-cpp-python, Anyscale / Together...) + + The response_model param takes a type (+ supports Pydantic) and behaves just as w/ Instructor (see below) + ''' + response_format = None + type_adapter = None + + if response_model: + type_adapter = TypeAdapter(response_model) + schema = type_adapter.json_schema() + messages = [{ + "role": "system", + "content": f"You respond in JSON format with the following schema: {json.dumps(schema, indent=2)}" + }] + messages + response_format={"type": "json_object", "schema": schema} + + data = requests.post(endpoint, headers={"Content-Type": "application/json"}, + json=dict(messages=messages, response_format=response_format, **kwargs)).json() + if 'error' in data: + raise Exception(data['error']['message']) + + content = data["choices"][0]["message"]["content"] + return type_adapter.validate_json(content) if type_adapter else content + +else: + + # This alternative branch uses Instructor + OpenAI client lib. + # Instructor support streamed iterable responses, retry & more. + # (see https://python.useinstructor.com/) + #! pip install instructor openai + import instructor, openai + client = instructor.patch( + openai.OpenAI(api_key="123", base_url="http://localhost:8080"), + mode=instructor.Mode.JSON_SCHEMA) + create_completion = client.chat.completions.create + + +if __name__ == '__main__': + + class QAPair(BaseModel): + class Config: + extra = 'forbid' # triggers additionalProperties: false in the JSON schema + question: str + concise_answer: str + justification: str + stars: Annotated[int, Field(ge=1, le=5)] + + class PyramidalSummary(BaseModel): + class Config: + extra = 'forbid' # triggers additionalProperties: false in the JSON schema + title: str + summary: str + question_answers: Annotated[List[QAPair], MinLen(2)] + sub_sections: Optional[Annotated[List['PyramidalSummary'], MinLen(2)]] + + print("# Summary\n", create_completion( + model="...", + response_model=PyramidalSummary, + messages=[{ + "role": "user", + "content": f""" + You are a highly efficient corporate document summarizer. + Create a pyramidal summary of an imaginary internal document about our company processes + (starting high-level, going down to each sub sections). + Keep questions short, and answers even shorter (trivia / quizz style). + """ + }])) |