diff options
Diffstat (limited to 'examples/llama.swiftui/llama.cpp.swift')
-rw-r--r-- | examples/llama.swiftui/llama.cpp.swift/LibLlama.swift | 182 |
1 files changed, 157 insertions, 25 deletions
diff --git a/examples/llama.swiftui/llama.cpp.swift/LibLlama.swift b/examples/llama.swiftui/llama.cpp.swift/LibLlama.swift index 3754f055..272e1fd8 100644 --- a/examples/llama.swiftui/llama.cpp.swift/LibLlama.swift +++ b/examples/llama.swiftui/llama.cpp.swift/LibLlama.swift @@ -6,16 +6,34 @@ enum LlamaError: Error { case couldNotInitializeContext } +func llama_batch_clear(_ batch: inout llama_batch) { + batch.n_tokens = 0 +} + +func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama_pos, _ seq_ids: [llama_seq_id], _ logits: Bool) { + batch.token [Int(batch.n_tokens)] = id + batch.pos [Int(batch.n_tokens)] = pos + batch.n_seq_id[Int(batch.n_tokens)] = Int32(seq_ids.count) + for i in 0..<seq_ids.count { + batch.seq_id[Int(batch.n_tokens)]![Int(i)] = seq_ids[i] + } + batch.logits [Int(batch.n_tokens)] = logits ? 1 : 0 + + batch.n_tokens += 1 +} + actor LlamaContext { private var model: OpaquePointer private var context: OpaquePointer private var batch: llama_batch private var tokens_list: [llama_token] + /// This variable is used to store temporarily invalid cchars private var temporary_invalid_cchars: [CChar] - var n_len: Int32 = 512 + var n_len: Int32 = 64 var n_cur: Int32 = 0 + var n_decode: Int32 = 0 init(model: OpaquePointer, context: OpaquePointer) { @@ -27,25 +45,34 @@ actor LlamaContext { } deinit { + llama_batch_free(batch) llama_free(context) llama_free_model(model) llama_backend_free() } - static func createContext(path: String) throws -> LlamaContext { + static func create_context(path: String) throws -> LlamaContext { llama_backend_init(false) - let model_params = llama_model_default_params() + var model_params = llama_model_default_params() +#if targetEnvironment(simulator) + model_params.n_gpu_layers = 0 + print("Running on simulator, force use n_gpu_layers = 0") +#endif let model = llama_load_model_from_file(path, model_params) guard let model else { print("Could not load model at \(path)") throw LlamaError.couldNotInitializeContext } + + let n_threads = max(1, min(8, ProcessInfo.processInfo.processorCount - 2)) + print("Using \(n_threads) threads") + var ctx_params = llama_context_default_params() - ctx_params.seed = 1234 + ctx_params.seed = 1234 ctx_params.n_ctx = 2048 - ctx_params.n_threads = 8 - ctx_params.n_threads_batch = 8 + ctx_params.n_threads = UInt32(n_threads) + ctx_params.n_threads_batch = UInt32(n_threads) let context = llama_new_context_with_model(model, ctx_params) guard let context else { @@ -56,6 +83,26 @@ actor LlamaContext { return LlamaContext(model: model, context: context) } + func model_info() -> String { + let result = UnsafeMutablePointer<Int8>.allocate(capacity: 256) + result.initialize(repeating: Int8(0), count: 256) + defer { + result.deallocate() + } + + // TODO: this is probably very stupid way to get the string from C + + let nChars = llama_model_desc(model, result, 256) + let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nChars)) + + var SwiftString = "" + for char in bufferPointer { + SwiftString.append(Character(UnicodeScalar(UInt8(char)))) + } + + return SwiftString + } + func get_n_tokens() -> Int32 { return batch.n_tokens; } @@ -79,16 +126,11 @@ actor LlamaContext { print(String(cString: token_to_piece(token: id) + [0])) } - // batch = llama_batch_init(512, 0) // done in init() - batch.n_tokens = Int32(tokens_list.count) + llama_batch_clear(&batch) - for i1 in 0..<batch.n_tokens { + for i1 in 0..<tokens_list.count { let i = Int(i1) - batch.token[i] = tokens_list[i] - batch.pos[i] = i1 - batch.n_seq_id[Int(i)] = 1 - batch.seq_id[Int(i)]![0] = 0 - batch.logits[i] = 0 + llama_batch_add(&batch, tokens_list[i], Int32(i), [0], false) } batch.logits[Int(batch.n_tokens) - 1] = 1 // true @@ -141,18 +183,11 @@ actor LlamaContext { print(new_token_str) // tokens_list.append(new_token_id) - batch.n_tokens = 0 - - batch.token[Int(batch.n_tokens)] = new_token_id - batch.pos[Int(batch.n_tokens)] = n_cur - batch.n_seq_id[Int(batch.n_tokens)] = 1 - batch.seq_id[Int(batch.n_tokens)]![0] = 0 - batch.logits[Int(batch.n_tokens)] = 1 // true - batch.n_tokens += 1 + llama_batch_clear(&batch) + llama_batch_add(&batch, new_token_id, n_cur, [0], true) n_decode += 1 - - n_cur += 1 + n_cur += 1 if llama_decode(context, batch) != 0 { print("failed to evaluate llama!") @@ -161,14 +196,111 @@ actor LlamaContext { return new_token_str } + func bench(pp: Int, tg: Int, pl: Int, nr: Int = 1) -> String { + var pp_avg: Double = 0 + var tg_avg: Double = 0 + + var pp_std: Double = 0 + var tg_std: Double = 0 + + for r in 0..<nr { + // bench prompt processing + + llama_batch_clear(&batch) + + let n_tokens = pp + + for i in 0..<n_tokens { + llama_batch_add(&batch, 0, Int32(i), [0], false) + } + batch.logits[Int(batch.n_tokens) - 1] = 1 // true + + llama_kv_cache_clear(context) + + let t_pp_start = ggml_time_us() + + if llama_decode(context, batch) != 0 { + print("llama_decode() failed during prompt") + } + + let t_pp_end = ggml_time_us() + + // bench text generation + + llama_kv_cache_clear(context) + + let t_tg_start = ggml_time_us() + + for i in 0..<tg { + llama_batch_clear(&batch) + + for j in 0..<pl { + llama_batch_add(&batch, 0, Int32(i), [Int32(j)], true) + } + + if llama_decode(context, batch) != 0 { + print("llama_decode() failed during text generation") + } + } + + let t_tg_end = ggml_time_us() + + llama_kv_cache_clear(context) + + let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0 + let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0 + + let speed_pp = Double(pp) / t_pp + let speed_tg = Double(pl*tg) / t_tg + + pp_avg += speed_pp + tg_avg += speed_tg + + pp_std += speed_pp * speed_pp + tg_std += speed_tg * speed_tg + + print("pp \(speed_pp) t/s, tg \(speed_tg) t/s") + } + + pp_avg /= Double(nr) + tg_avg /= Double(nr) + + if nr > 1 { + pp_std = sqrt(pp_std / Double(nr - 1) - pp_avg * pp_avg * Double(nr) / Double(nr - 1)) + tg_std = sqrt(tg_std / Double(nr - 1) - tg_avg * tg_avg * Double(nr) / Double(nr - 1)) + } else { + pp_std = 0 + tg_std = 0 + } + + let model_desc = model_info(); + let model_size = String(format: "%.2f GiB", Double(llama_model_size(model)) / 1024.0 / 1024.0 / 1024.0); + let model_n_params = String(format: "%.2f B", Double(llama_model_n_params(model)) / 1e9); + let backend = "Metal"; + let pp_avg_str = String(format: "%.2f", pp_avg); + let tg_avg_str = String(format: "%.2f", tg_avg); + let pp_std_str = String(format: "%.2f", pp_std); + let tg_std_str = String(format: "%.2f", tg_std); + + var result = "" + + result += String("| model | size | params | backend | test | t/s |\n") + result += String("| --- | --- | --- | --- | --- | --- |\n") + result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | pp \(pp) | \(pp_avg_str) ± \(pp_std_str) |\n") + result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | tg \(tg) | \(tg_avg_str) ± \(tg_std_str) |\n") + + return result; + } + func clear() { tokens_list.removeAll() temporary_invalid_cchars.removeAll() + llama_kv_cache_clear(context) } private func tokenize(text: String, add_bos: Bool) -> [llama_token] { let utf8Count = text.utf8.count - let n_tokens = utf8Count + (add_bos ? 1 : 0) + let n_tokens = utf8Count + (add_bos ? 1 : 0) + 1 let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens) let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false) |