summaryrefslogtreecommitdiff
path: root/examples/llama.swiftui/llama.cpp.swift
diff options
context:
space:
mode:
Diffstat (limited to 'examples/llama.swiftui/llama.cpp.swift')
-rw-r--r--examples/llama.swiftui/llama.cpp.swift/LibLlama.swift182
1 files changed, 157 insertions, 25 deletions
diff --git a/examples/llama.swiftui/llama.cpp.swift/LibLlama.swift b/examples/llama.swiftui/llama.cpp.swift/LibLlama.swift
index 3754f055..272e1fd8 100644
--- a/examples/llama.swiftui/llama.cpp.swift/LibLlama.swift
+++ b/examples/llama.swiftui/llama.cpp.swift/LibLlama.swift
@@ -6,16 +6,34 @@ enum LlamaError: Error {
case couldNotInitializeContext
}
+func llama_batch_clear(_ batch: inout llama_batch) {
+ batch.n_tokens = 0
+}
+
+func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama_pos, _ seq_ids: [llama_seq_id], _ logits: Bool) {
+ batch.token [Int(batch.n_tokens)] = id
+ batch.pos [Int(batch.n_tokens)] = pos
+ batch.n_seq_id[Int(batch.n_tokens)] = Int32(seq_ids.count)
+ for i in 0..<seq_ids.count {
+ batch.seq_id[Int(batch.n_tokens)]![Int(i)] = seq_ids[i]
+ }
+ batch.logits [Int(batch.n_tokens)] = logits ? 1 : 0
+
+ batch.n_tokens += 1
+}
+
actor LlamaContext {
private var model: OpaquePointer
private var context: OpaquePointer
private var batch: llama_batch
private var tokens_list: [llama_token]
+
/// This variable is used to store temporarily invalid cchars
private var temporary_invalid_cchars: [CChar]
- var n_len: Int32 = 512
+ var n_len: Int32 = 64
var n_cur: Int32 = 0
+
var n_decode: Int32 = 0
init(model: OpaquePointer, context: OpaquePointer) {
@@ -27,25 +45,34 @@ actor LlamaContext {
}
deinit {
+ llama_batch_free(batch)
llama_free(context)
llama_free_model(model)
llama_backend_free()
}
- static func createContext(path: String) throws -> LlamaContext {
+ static func create_context(path: String) throws -> LlamaContext {
llama_backend_init(false)
- let model_params = llama_model_default_params()
+ var model_params = llama_model_default_params()
+#if targetEnvironment(simulator)
+ model_params.n_gpu_layers = 0
+ print("Running on simulator, force use n_gpu_layers = 0")
+#endif
let model = llama_load_model_from_file(path, model_params)
guard let model else {
print("Could not load model at \(path)")
throw LlamaError.couldNotInitializeContext
}
+
+ let n_threads = max(1, min(8, ProcessInfo.processInfo.processorCount - 2))
+ print("Using \(n_threads) threads")
+
var ctx_params = llama_context_default_params()
- ctx_params.seed = 1234
+ ctx_params.seed = 1234
ctx_params.n_ctx = 2048
- ctx_params.n_threads = 8
- ctx_params.n_threads_batch = 8
+ ctx_params.n_threads = UInt32(n_threads)
+ ctx_params.n_threads_batch = UInt32(n_threads)
let context = llama_new_context_with_model(model, ctx_params)
guard let context else {
@@ -56,6 +83,26 @@ actor LlamaContext {
return LlamaContext(model: model, context: context)
}
+ func model_info() -> String {
+ let result = UnsafeMutablePointer<Int8>.allocate(capacity: 256)
+ result.initialize(repeating: Int8(0), count: 256)
+ defer {
+ result.deallocate()
+ }
+
+ // TODO: this is probably very stupid way to get the string from C
+
+ let nChars = llama_model_desc(model, result, 256)
+ let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nChars))
+
+ var SwiftString = ""
+ for char in bufferPointer {
+ SwiftString.append(Character(UnicodeScalar(UInt8(char))))
+ }
+
+ return SwiftString
+ }
+
func get_n_tokens() -> Int32 {
return batch.n_tokens;
}
@@ -79,16 +126,11 @@ actor LlamaContext {
print(String(cString: token_to_piece(token: id) + [0]))
}
- // batch = llama_batch_init(512, 0) // done in init()
- batch.n_tokens = Int32(tokens_list.count)
+ llama_batch_clear(&batch)
- for i1 in 0..<batch.n_tokens {
+ for i1 in 0..<tokens_list.count {
let i = Int(i1)
- batch.token[i] = tokens_list[i]
- batch.pos[i] = i1
- batch.n_seq_id[Int(i)] = 1
- batch.seq_id[Int(i)]![0] = 0
- batch.logits[i] = 0
+ llama_batch_add(&batch, tokens_list[i], Int32(i), [0], false)
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
@@ -141,18 +183,11 @@ actor LlamaContext {
print(new_token_str)
// tokens_list.append(new_token_id)
- batch.n_tokens = 0
-
- batch.token[Int(batch.n_tokens)] = new_token_id
- batch.pos[Int(batch.n_tokens)] = n_cur
- batch.n_seq_id[Int(batch.n_tokens)] = 1
- batch.seq_id[Int(batch.n_tokens)]![0] = 0
- batch.logits[Int(batch.n_tokens)] = 1 // true
- batch.n_tokens += 1
+ llama_batch_clear(&batch)
+ llama_batch_add(&batch, new_token_id, n_cur, [0], true)
n_decode += 1
-
- n_cur += 1
+ n_cur += 1
if llama_decode(context, batch) != 0 {
print("failed to evaluate llama!")
@@ -161,14 +196,111 @@ actor LlamaContext {
return new_token_str
}
+ func bench(pp: Int, tg: Int, pl: Int, nr: Int = 1) -> String {
+ var pp_avg: Double = 0
+ var tg_avg: Double = 0
+
+ var pp_std: Double = 0
+ var tg_std: Double = 0
+
+ for r in 0..<nr {
+ // bench prompt processing
+
+ llama_batch_clear(&batch)
+
+ let n_tokens = pp
+
+ for i in 0..<n_tokens {
+ llama_batch_add(&batch, 0, Int32(i), [0], false)
+ }
+ batch.logits[Int(batch.n_tokens) - 1] = 1 // true
+
+ llama_kv_cache_clear(context)
+
+ let t_pp_start = ggml_time_us()
+
+ if llama_decode(context, batch) != 0 {
+ print("llama_decode() failed during prompt")
+ }
+
+ let t_pp_end = ggml_time_us()
+
+ // bench text generation
+
+ llama_kv_cache_clear(context)
+
+ let t_tg_start = ggml_time_us()
+
+ for i in 0..<tg {
+ llama_batch_clear(&batch)
+
+ for j in 0..<pl {
+ llama_batch_add(&batch, 0, Int32(i), [Int32(j)], true)
+ }
+
+ if llama_decode(context, batch) != 0 {
+ print("llama_decode() failed during text generation")
+ }
+ }
+
+ let t_tg_end = ggml_time_us()
+
+ llama_kv_cache_clear(context)
+
+ let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
+ let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
+
+ let speed_pp = Double(pp) / t_pp
+ let speed_tg = Double(pl*tg) / t_tg
+
+ pp_avg += speed_pp
+ tg_avg += speed_tg
+
+ pp_std += speed_pp * speed_pp
+ tg_std += speed_tg * speed_tg
+
+ print("pp \(speed_pp) t/s, tg \(speed_tg) t/s")
+ }
+
+ pp_avg /= Double(nr)
+ tg_avg /= Double(nr)
+
+ if nr > 1 {
+ pp_std = sqrt(pp_std / Double(nr - 1) - pp_avg * pp_avg * Double(nr) / Double(nr - 1))
+ tg_std = sqrt(tg_std / Double(nr - 1) - tg_avg * tg_avg * Double(nr) / Double(nr - 1))
+ } else {
+ pp_std = 0
+ tg_std = 0
+ }
+
+ let model_desc = model_info();
+ let model_size = String(format: "%.2f GiB", Double(llama_model_size(model)) / 1024.0 / 1024.0 / 1024.0);
+ let model_n_params = String(format: "%.2f B", Double(llama_model_n_params(model)) / 1e9);
+ let backend = "Metal";
+ let pp_avg_str = String(format: "%.2f", pp_avg);
+ let tg_avg_str = String(format: "%.2f", tg_avg);
+ let pp_std_str = String(format: "%.2f", pp_std);
+ let tg_std_str = String(format: "%.2f", tg_std);
+
+ var result = ""
+
+ result += String("| model | size | params | backend | test | t/s |\n")
+ result += String("| --- | --- | --- | --- | --- | --- |\n")
+ result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | pp \(pp) | \(pp_avg_str) ± \(pp_std_str) |\n")
+ result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | tg \(tg) | \(tg_avg_str) ± \(tg_std_str) |\n")
+
+ return result;
+ }
+
func clear() {
tokens_list.removeAll()
temporary_invalid_cchars.removeAll()
+ llama_kv_cache_clear(context)
}
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
let utf8Count = text.utf8.count
- let n_tokens = utf8Count + (add_bos ? 1 : 0)
+ let n_tokens = utf8Count + (add_bos ? 1 : 0) + 1
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)