diff options
Diffstat (limited to 'examples/llava/MobileVLM-README.md')
-rw-r--r-- | examples/llava/MobileVLM-README.md | 131 |
1 files changed, 131 insertions, 0 deletions
diff --git a/examples/llava/MobileVLM-README.md b/examples/llava/MobileVLM-README.md new file mode 100644 index 00000000..c6258eba --- /dev/null +++ b/examples/llava/MobileVLM-README.md @@ -0,0 +1,131 @@ +# MobileVLM + +Currently this implementation supports [MobileVLM-v1.7](https://huggingface.co/mtgv/MobileVLM-1.7B) variants. + +for more information, please go to [Meituan-AutoML/MobileVLM](https://github.com/Meituan-AutoML/MobileVLM) + +The implementation is based on llava, and is compatible with llava and mobileVLM. The usage is basically same as llava. + +## Usage +Build with cmake or run `make llava-cli` to build it. + +After building, run: `./llava-cli` to see the usage. For example: + +```sh +./llava-cli -m MobileVLM-1.7B/ggml-model-q4_k.gguf \ + --mmproj MobileVLM-1.7B/mmproj-model-f16.gguf \ + --image path/to/an/image.jpg \ + -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? Answer the question using a single word or phrase. ASSISTANT:" +``` + +## Model conversion + +- Clone `mobileVLM-1.7B` and `clip-vit-large-patch14-336` locally: + +```sh +git clone https://huggingface.co/mtgv/MobileVLM-1.7B + +git clone https://huggingface.co/openai/clip-vit-large-patch14-336 +``` + +2. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents: + +```sh +python ./examples/llava/llava-surgery.py -m path/to/MobileVLM-1.7B +``` + +3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` to convert the LLaVA image encoder to GGUF: + +```sh +python ./examples/llava/convert-image-encoder-to-gguf \ + -m path/to/clip-vit-large-patch14-336 \ + --llava-projector path/to/MobileVLM-1.7B/llava.projector \ + --output-dir path/to/MobileVLM-1.7B \ + --projector-type ldp +``` + +4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF: + +```sh +python ./convert.py path/to/MobileVLM-1.7B +``` + +5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k` +```sh +./quantize path/to/MobileVLM-1.7B/ggml-model-f16.gguf path/to/MobileVLM-1.7B/ggml-model-q4_k.gguf q4_k_s +``` + +Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directory. + +## Android compile and run +### compile +refer to `examples/llava/android/build_64.sh` +```sh +mkdir examples/llava/android/build_64 +cd examples/llava/android/build_64 +../build_64.sh +``` +### run on Android +refer to `android/adb_run.sh`, modify resources' `name` and `path` + +## some result on Android with `Snapdragon 888` chip +### case 1 +**input** +```sh +/data/local/tmp/llava-cli \ + -m /data/local/tmp/ggml-model-q4_k.gguf \ + --mmproj /data/local/tmp/mmproj-model-f16.gguf \ + -t 4 \ + --image /data/local/tmp/demo.jpg \ + -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:" +``` +**output** +```sh +encode_image_with_clip: image encoded in 21148.71 ms by CLIP ( 146.87 ms per image patch) + Susan Wise Bauer +llama_print_timings: load time = 23574.72 ms +llama_print_timings: sample time = 1.24 ms / 6 runs ( 0.21 ms per token, 4850.44 tokens per second) +llama_print_timings: prompt eval time = 12460.15 ms / 246 tokens ( 50.65 ms per token, 19.74 tokens per second) +llama_print_timings: eval time = 424.86 ms / 6 runs ( 70.81 ms per token, 14.12 tokens per second) +llama_print_timings: total time = 34731.93 ms +``` +### case 2 +**input** +```sh +/data/local/tmp/llava-cli \ + -m /data/local/tmp/ggml-model-q4_k.gguf \ + --mmproj /data/local/tmp/mmproj-model-f16.gguf \ + -t 4 \ + --image /data/local/tmp/cat.jpeg \ + -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:" +``` + +**output** +```sh +encode_image_with_clip: image encoded in 21149.51 ms by CLIP ( 146.87 ms per image patch) + The image depicts a cat sitting in the grass near some tall green plants. +llama_print_timings: load time = 23257.32 ms +llama_print_timings: sample time = 5.25 ms / 18 runs ( 0.29 ms per token, 3430.53 tokens per second) +llama_print_timings: prompt eval time = 11900.73 ms / 232 tokens ( 51.30 ms per token, 19.49 tokens per second) +llama_print_timings: eval time = 1279.03 ms / 18 runs ( 71.06 ms per token, 14.07 tokens per second) +llama_print_timings: total time = 34570.79 ms +``` + +## Minor shortcomings +The `n_patch` of output in `ldp` is 1/4 of the input. In order to implement quickly, we uniformly modified `clip_n_patches` function to a quarter. when counting the time consumption, the calculated time will be 4 times bigger than the real cost. + +## TODO + +- [ ] Support non-CPU backend for the new operators, such as `depthwise`, `hardswish`, `hardsigmoid` +- [ ] Optimize LDP projector performance + + - Optimize the structure definition to avoid unnecessary memory rearrangements, to reduce the use of `ggml_permute_cpy`; + - Optimize operator implementation (ARM CPU/NVIDIA GPU): such as depthwise conv, hardswish, hardsigmoid, etc. +- [ ] run MobileVLM on `Jetson Orin` +- [ ] Support more model variants, such as `MobileVLM-3B`. + + +## contributor +```sh +zhangjidong05, yangyang260, huyiming03, chenxiaotao03 +``` |