summaryrefslogtreecommitdiff
path: root/examples/llava/clip.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/llava/clip.cpp')
-rw-r--r--examples/llava/clip.cpp47
1 files changed, 19 insertions, 28 deletions
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 6161fd85..4a0338a3 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -2,18 +2,6 @@
// so there might be still unnecessary artifacts hanging around
// I'll gradually clean and extend it
-#include <cassert>
-#include <cmath>
-#include <cstdlib>
-#include <cstring>
-#include <fstream>
-#include <iostream>
-#include <map>
-#include <regex>
-#include <stdexcept>
-#include <vector>
-#include <sstream>
-
#include "clip.h"
#include "ggml.h"
#include "ggml-alloc.h"
@@ -30,6 +18,19 @@
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
+#include <cassert>
+#include <cmath>
+#include <cstdlib>
+#include <cstring>
+#include <fstream>
+#include <iostream>
+#include <map>
+#include <regex>
+#include <stdexcept>
+#include <vector>
+#include <sstream>
+#include <cinttypes>
+
static std::string format(const char * fmt, ...) {
va_list ap;
va_list ap2;
@@ -217,9 +218,9 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
static void print_tensor_info(const ggml_tensor* tensor, const char* prefix = "") {
size_t tensor_size = ggml_nbytes(tensor);
- printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%d, %d, %d, %d], type: %d\n",
+ printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
- tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], tensor->type);
+ tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
}
static projector_type clip_projector_type_from_string(const std::string & name) {
@@ -592,7 +593,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
// stride = 1, padding = 1, bias is nullptr
- block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, nullptr, 1, 1, 1, 1, 1, 1);
+ block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
// layer norm
// // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
@@ -640,7 +641,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
// block_2
{
// stride = 2
- block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, nullptr, 2, 2, 1, 1, 1, 1);
+ block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
// layer norm
@@ -741,18 +742,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
{
std::map<enum ggml_type, uint32_t> n_type;
- uint32_t n_type_max = 0;
- enum ggml_type type_max = GGML_TYPE_F32;
-
for (int i = 0; i < n_tensors; i++) {
enum ggml_type type = gguf_get_tensor_type(ctx, i);
n_type[type]++;
-
- if (n_type_max < n_type[type]) {
- n_type_max = n_type[type];
- type_max = type;
- }
}
printf("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
@@ -795,14 +788,12 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
size_t tensor_size = ggml_nbytes(cur);
buffer_size += tensor_size;
if (verbosity >= 3) {
- printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%d, %d, %d, %d], type: %d\n", __func__, i,
- ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], type);
+ printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
+ __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
}
}
}
-
-
buffer_size += n_tensors * 128 /* CLIP PADDING */;
clip_ctx * new_clip = new clip_ctx;