diff options
Diffstat (limited to 'examples/llava/clip.cpp')
-rw-r--r-- | examples/llava/clip.cpp | 122 |
1 files changed, 61 insertions, 61 deletions
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index 5954bf6c..e431c7f7 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -3,6 +3,7 @@ // I'll gradually clean and extend it // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch #include "clip.h" +#include "log.h" #include "ggml.h" #include "ggml-alloc.h" #include "ggml-backend.h" @@ -23,7 +24,6 @@ #include <cstdlib> #include <cstring> #include <fstream> -#include <iostream> #include <map> #include <regex> #include <stdexcept> @@ -145,7 +145,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = { static int get_key_idx(const gguf_context * ctx, const char * key) { int i = gguf_find_key(ctx, key); if (i == -1) { - fprintf(stderr, "key %s not found in file\n", key); + LOG_TEE("key %s not found in file\n", key); throw std::runtime_error(format("Missing required key: %s", key)); } @@ -247,7 +247,7 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") { size_t tensor_size = ggml_nbytes(tensor); - printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n", + LOG_TEE("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n", prefix, ggml_n_dims(tensor), tensor->name, tensor_size, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type)); } @@ -265,7 +265,7 @@ static projector_type clip_projector_type_from_string(const std::string & name) static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) { std::ofstream file(filename, std::ios::binary); if (!file.is_open()) { - std::cerr << "Failed to open file for writing: " << filename << std::endl; + LOG_TEE("Failed to open file for writing: %s\n", filename.c_str()); return; } @@ -284,7 +284,7 @@ static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::s static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) { std::ofstream file(filename, std::ios::binary); if (!file.is_open()) { - std::cerr << "Failed to open file for writing: " << filename << std::endl; + LOG_TEE("Failed to open file for writing: %s\n", filename.c_str()); return; } @@ -515,7 +515,7 @@ struct clip_ctx { static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) { if (!ctx->has_vision_encoder) { - printf("This gguf file seems to have no vision encoder\n"); + LOG_TEE("This gguf file seems to have no vision encoder\n"); return nullptr; } @@ -879,21 +879,21 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { const int idx_name = gguf_find_key(ctx, KEY_NAME); if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug const std::string name = gguf_get_val_str(ctx, idx_name); - printf("%s: model name: %s\n", __func__, name.c_str()); + LOG_TEE("%s: model name: %s\n", __func__, name.c_str()); } - printf("%s: description: %s\n", __func__, description.c_str()); - printf("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx)); - printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); - printf("%s: n_tensors: %d\n", __func__, n_tensors); - printf("%s: n_kv: %d\n", __func__, n_kv); - printf("%s: ftype: %s\n", __func__, ftype_str.c_str()); - printf("\n"); + LOG_TEE("%s: description: %s\n", __func__, description.c_str()); + LOG_TEE("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx)); + LOG_TEE("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); + LOG_TEE("%s: n_tensors: %d\n", __func__, n_tensors); + LOG_TEE("%s: n_kv: %d\n", __func__, n_kv); + LOG_TEE("%s: ftype: %s\n", __func__, ftype_str.c_str()); + LOG_TEE("\n"); } const int n_tensors = gguf_get_n_tensors(ctx); // kv const int n_kv = gguf_get_n_kv(ctx); - printf("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n", + LOG_TEE("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n", __func__, n_kv, n_tensors, fname); { std::map<enum ggml_type, uint32_t> n_type; @@ -904,7 +904,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { n_type[type]++; } - printf("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); + LOG_TEE("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); for (int i = 0; i < n_kv; i++) { const char * name = gguf_get_key(ctx, i); const enum gguf_type type = gguf_get_kv_type(ctx, i); @@ -920,7 +920,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { } replace_all(value, "\n", "\\n"); - printf("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); + LOG_TEE("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); } // print type counts @@ -929,7 +929,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { continue; } - printf("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); + LOG_TEE("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); } } @@ -944,7 +944,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { size_t tensor_size = ggml_nbytes(cur); model_size += tensor_size; if (verbosity >= 3) { - printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n", + LOG_TEE("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n", __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type)); } } @@ -971,18 +971,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { #ifdef GGML_USE_CUDA new_clip->backend = ggml_backend_cuda_init(0); - printf("%s: CLIP using CUDA backend\n", __func__); + LOG_TEE("%s: CLIP using CUDA backend\n", __func__); #endif #ifdef GGML_USE_METAL new_clip->backend = ggml_backend_metal_init(); - printf("%s: CLIP using Metal backend\n", __func__); + LOG_TEE("%s: CLIP using Metal backend\n", __func__); #endif if (!new_clip->backend) { new_clip->backend = ggml_backend_cpu_init(); - printf("%s: CLIP using CPU backend\n", __func__); + LOG_TEE("%s: CLIP using CPU backend\n", __func__); } // model size and capabilities @@ -1006,15 +1006,15 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { new_clip->use_gelu = gguf_get_val_bool(ctx, idx); if (verbosity >= 1) { - printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder); - printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder); - printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector); - printf("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0); - printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0); + LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder); + LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder); + LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector); + LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0); + LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0); } } - printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors); + LOG_TEE("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors); // load tensors { @@ -1027,7 +1027,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { new_clip->ctx_data = ggml_init(params); if (!new_clip->ctx_data) { - fprintf(stderr, "%s: ggml_init() failed\n", __func__); + LOG_TEE("%s: ggml_init() failed\n", __func__); clip_free(new_clip); gguf_free(ctx); return nullptr; @@ -1035,7 +1035,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { - printf("cannot open model file for loading tensors\n"); + LOG_TEE("cannot open model file for loading tensors\n"); clip_free(new_clip); gguf_free(ctx); return nullptr; @@ -1057,7 +1057,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i); fin.seekg(offset, std::ios::beg); if (!fin) { - printf("%s: failed to seek for tensor %s\n", __func__, name); + LOG_TEE("%s: failed to seek for tensor %s\n", __func__, name); clip_free(new_clip); gguf_free(ctx); return nullptr; @@ -1128,23 +1128,23 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { } if (verbosity >= 2) { - printf("\n%s: vision model hparams\n", __func__); - printf("image_size %d\n", hparams.image_size); - printf("patch_size %d\n", hparams.patch_size); - printf("v_hidden_size %d\n", hparams.hidden_size); - printf("v_n_intermediate %d\n", hparams.n_intermediate); - printf("v_projection_dim %d\n", hparams.projection_dim); - printf("v_n_head %d\n", hparams.n_head); - printf("v_n_layer %d\n", hparams.n_layer); - printf("v_eps %f\n", hparams.eps); - printf("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]); - printf("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]); - printf("v_image_grid_pinpoints: "); + LOG_TEE("\n%s: vision model hparams\n", __func__); + LOG_TEE("image_size %d\n", hparams.image_size); + LOG_TEE("patch_size %d\n", hparams.patch_size); + LOG_TEE("v_hidden_size %d\n", hparams.hidden_size); + LOG_TEE("v_n_intermediate %d\n", hparams.n_intermediate); + LOG_TEE("v_projection_dim %d\n", hparams.projection_dim); + LOG_TEE("v_n_head %d\n", hparams.n_head); + LOG_TEE("v_n_layer %d\n", hparams.n_layer); + LOG_TEE("v_eps %f\n", hparams.eps); + LOG_TEE("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]); + LOG_TEE("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]); + LOG_TEE("v_image_grid_pinpoints: "); for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) { - printf("%d ", hparams.image_grid_pinpoints[i]); + LOG_TEE("%d ", hparams.image_grid_pinpoints[i]); } - printf("\n"); - printf("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type); + LOG_TEE("\n"); + LOG_TEE("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type); } @@ -1155,7 +1155,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight")); vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias")); } catch(const std::exception& e) { - fprintf(stderr, "%s: failed to load vision model tensors\n", __func__); + LOG_TEE("%s: failed to load vision model tensors\n", __func__); } // LLaVA projection @@ -1184,7 +1184,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { } catch (std::runtime_error & e) { } try { vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE); - // fprintf(stderr, "%s: image_newline tensor (llava-1.6) found\n", __func__); + // LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__); } catch (std::runtime_error & e) { } } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) { // MobileVLM projection @@ -1264,7 +1264,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch); ggml_gallocr_reserve(new_clip->compute_alloc, gf); size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0); - printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0); + LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0); } return new_clip; @@ -1304,7 +1304,7 @@ bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) { int nx, ny, nc; auto * data = stbi_load(fname, &nx, &ny, &nc, 3); if (!data) { - fprintf(stderr, "%s: failed to load image '%s'\n", __func__, fname); + LOG_TEE("%s: failed to load image '%s'\n", __func__, fname); return false; } build_clip_img_from_data(data, nx, ny, img); @@ -1316,7 +1316,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length int nx, ny, nc; auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3); if (!data) { - fprintf(stderr, "%s: failed to decode image bytes\n", __func__); + LOG_TEE("%s: failed to decode image bytes\n", __func__); return false; } build_clip_img_from_data(data, nx, ny, img); @@ -1506,7 +1506,7 @@ static std::pair<int, int> select_best_resolution(const std::pair<int, int> & or int downscaled_height = static_cast<int>(original_height * scale); int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height); int wasted_resolution = (width * height) - effective_resolution; - // fprintf(stderr, "resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution); + // LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution); if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) { max_effective_resolution = effective_resolution; min_wasted_resolution = wasted_resolution; @@ -1545,7 +1545,7 @@ static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & im bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) { bool pad_to_square = true; if (!ctx->has_vision_encoder) { - printf("This gguf file seems to have no vision encoder\n"); + LOG_TEE("This gguf file seems to have no vision encoder\n"); return false; } auto & params = ctx->vision_model.hparams; @@ -1622,7 +1622,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli } for (size_t i = 0; i < patches.size(); i++) { - // printf("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny); + // LOG_TEE("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny); clip_image_u8_free(patches[i]); } @@ -1765,7 +1765,7 @@ int clip_n_patches(const struct clip_ctx * ctx) { bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) { if (!ctx->has_vision_encoder) { - printf("This gguf file seems to have no vision encoder\n"); + LOG_TEE("This gguf file seems to have no vision encoder\n"); return false; } @@ -1777,7 +1777,7 @@ bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f3 bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) { if (!ctx->has_vision_encoder) { - printf("This gguf file seems to have no vision encoder\n"); + LOG_TEE("This gguf file seems to have no vision encoder\n"); return false; } @@ -1939,7 +1939,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i new_type = type; if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) { new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type - // fprintf(stderr, "%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type)); + // LOG_TEE("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type)); } const size_t n_elms = ggml_nelements(cur); float * f32_data; @@ -1958,7 +1958,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i f32_data = (float *)conv_buf.data(); break; default: - printf("Please use an input file in f32 or f16\n"); + LOG_TEE("Please use an input file in f32 or f16\n"); gguf_free(ctx_out); return false; } @@ -1985,7 +1985,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i fout.put(0); } - printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize, + LOG_TEE("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize, orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); } @@ -2001,8 +2001,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i gguf_free(ctx_out); { - printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0); - printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0); + LOG_TEE("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0); + LOG_TEE("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0); } return true; |