diff options
Diffstat (limited to 'examples/llava/convert-image-encoder-to-gguf.py')
-rw-r--r-- | examples/llava/convert-image-encoder-to-gguf.py | 331 |
1 files changed, 0 insertions, 331 deletions
diff --git a/examples/llava/convert-image-encoder-to-gguf.py b/examples/llava/convert-image-encoder-to-gguf.py deleted file mode 100644 index b00bf7c6..00000000 --- a/examples/llava/convert-image-encoder-to-gguf.py +++ /dev/null @@ -1,331 +0,0 @@ -import argparse -import os -import json -import re - -import torch -import numpy as np -from gguf import * -from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel - -TEXT = "clip.text" -VISION = "clip.vision" - - -def k(raw_key: str, arch: str) -> str: - return raw_key.format(arch=arch) - - -def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool: - if name in ( - "logit_scale", - "text_model.embeddings.position_ids", - "vision_model.embeddings.position_ids", - ): - return True - - if has_llava and name in ["visual_projection.weight", "vision_model.post_layernorm.weight", "vision_model.post_layernorm.bias"]: - return True - - if name.startswith("v") and not has_vision: - return True - - if name.startswith("t") and not has_text: - return True - - return False - - -def get_tensor_name(name: str) -> str: - if "projection" in name: - return name - if "mm_projector" in name: - name = name.replace("model.mm_projector", "mm") - name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1) - name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1) - return name - - return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln") - - -def bytes_to_unicode(): - """ - Returns list of utf-8 byte and a corresponding list of unicode strings. - The reversible bpe codes work on unicode strings. - This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. - When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. - This is a significant percentage of your normal, say, 32K bpe vocab. - To avoid that, we want lookup tables between utf-8 bytes and unicode strings. - And avoids mapping to whitespace/control characters the bpe code barfs on. - """ - bs = ( - list(range(ord("!"), ord("~") + 1)) - + list(range(ord("¡"), ord("¬") + 1)) - + list(range(ord("®"), ord("ÿ") + 1)) - ) - cs = bs[:] - n = 0 - for b in range(2**8): - if b not in bs: - bs.append(b) - cs.append(2**8 + n) - n += 1 - cs = [chr(n) for n in cs] - return dict(zip(bs, cs)) - - -ap = argparse.ArgumentParser() -ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True) -ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16") -ap.add_argument("--text-only", action="store_true", required=False, - help="Save a text-only model. It can't be used to encode images") -ap.add_argument("--vision-only", action="store_true", required=False, - help="Save a vision-only model. It can't be used to encode texts") -ap.add_argument("--clip-model-is-vision", action="store_true", required=False, - help="The clip model is a pure vision model (ShareGPT4V vision extract for example)") -ap.add_argument("--clip-model-is-openclip", action="store_true", required=False, - help="The clip model is from openclip (for ViT-SO400M type))") -ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.") -ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp") -ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) -# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711 -# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5 -default_image_mean = [0.48145466, 0.4578275, 0.40821073] -default_image_std = [0.26862954, 0.26130258, 0.27577711] -ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None) -ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None) - -# with proper -args = ap.parse_args() - - -if args.text_only and args.vision_only: - print("--text-only and --image-only arguments cannot be specified at the same time.") - exit(1) - -if args.use_f32: - print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.") - -# output in the same directory as the model if output_dir is None -dir_model = args.model_dir - -if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip: - vocab = None - tokens = None -else: - with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: - vocab = json.load(f) - tokens = [key for key in vocab] - -with open(dir_model + "/config.json", "r", encoding="utf-8") as f: - config = json.load(f) - if args.clip_model_is_vision: - v_hparams = config - t_hparams = None - else: - v_hparams = config["vision_config"] - t_hparams = config["text_config"] - -# possible data types -# ftype == 0 -> float32 -# ftype == 1 -> float16 -# -# map from ftype to string -ftype_str = ["f32", "f16"] - -ftype = 1 -if args.use_f32: - ftype = 0 - -if args.clip_model_is_vision or args.clip_model_is_openclip: - model = CLIPVisionModel.from_pretrained(dir_model) - processor = None -else: - model = CLIPModel.from_pretrained(dir_model) - processor = CLIPProcessor.from_pretrained(dir_model) - -fname_middle = None -has_text_encoder = True -has_vision_encoder = True -has_llava_projector = False -if args.text_only: - fname_middle = "text-" - has_vision_encoder = False -elif args.llava_projector is not None: - fname_middle = "mmproj-" - has_text_encoder = False - has_llava_projector = True -elif args.vision_only: - fname_middle = "vision-" - has_text_encoder = False -else: - fname_middle = "" - -output_dir = args.output_dir if args.output_dir is not None else dir_model -os.makedirs(output_dir, exist_ok=True) -output_prefix = os.path.basename(output_dir).replace("ggml_", "") -fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf") -fout = GGUFWriter(path=fname_out, arch="clip") - -fout.add_bool("clip.has_text_encoder", has_text_encoder) -fout.add_bool("clip.has_vision_encoder", has_vision_encoder) -fout.add_bool("clip.has_llava_projector", has_llava_projector) -fout.add_file_type(ftype) -model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model) -fout.add_name(model_name) -if args.text_only: - fout.add_description("text-only CLIP model") -elif args.vision_only and not has_llava_projector: - fout.add_description("vision-only CLIP model") -elif has_llava_projector: - fout.add_description("image encoder for LLaVA") - # add projector type - fout.add_string("clip.projector_type", args.projector_type) -else: - fout.add_description("two-tower CLIP model") - -if has_text_encoder: - # text_model hparams - fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"]) - fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"]) - fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"]) - fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"])) - fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"]) - fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"]) - fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"]) - fout.add_token_list(tokens) - -if has_vision_encoder: - # vision_model hparams - fout.add_uint32("clip.vision.image_size", v_hparams["image_size"]) - fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"]) - fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"]) - fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"]) - fout.add_uint32("clip.vision.projection_dim", v_hparams.get("projection_dim", config["projection_dim"])) - fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"]) - fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"]) - block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"] - fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count) - # /** - # "image_grid_pinpoints": [ - # [ - # 336, - # 672 - # ], - # [ - # 672, - # 336 - # ], - # [ - # 672, - # 672 - # ], - # [ - # 1008, - # 336 - # ], - # [ - # 336, - # 1008 - # ] - # ], - # Flattened: - # [ - # 336, 672, - # 672, 336, - # 672, 672, - # 1008, 336, - # 336, 1008 - # ] - # * - # */ - if "image_grid_pinpoints" in v_hparams: - # flatten it - image_grid_pinpoints = [] - for pinpoint in v_hparams["image_grid_pinpoints"]: - for p in pinpoint: - image_grid_pinpoints.append(p) - fout.add_array("clip.vision.image_grid_pinpoints", image_grid_pinpoints) - if "image_crop_resolution" in v_hparams: - fout.add_uint32("clip.vision.image_crop_resolution", v_hparams["image_crop_resolution"]) - if "image_aspect_ratio" in v_hparams: - fout.add_string("clip.vision.image_aspect_ratio", v_hparams["image_aspect_ratio"]) - if "image_split_resolution" in v_hparams: - fout.add_uint32("clip.vision.image_split_resolution", v_hparams["image_split_resolution"]) - if "mm_patch_merge_type" in v_hparams: - fout.add_string("clip.vision.mm_patch_merge_type", v_hparams["mm_patch_merge_type"]) - if "mm_projector_type" in v_hparams: - fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"]) - - - if processor is not None: - image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean - image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std - else: - image_mean = args.image_mean if args.image_mean is not None else default_image_mean - image_std = args.image_std if args.image_std is not None else default_image_std - fout.add_array("clip.vision.image_mean", image_mean) - fout.add_array("clip.vision.image_std", image_std) - -use_gelu = v_hparams["hidden_act"] == "gelu" -fout.add_bool("clip.use_gelu", use_gelu) - - -if has_llava_projector: - model.vision_model.encoder.layers.pop(-1) - projector = torch.load(args.llava_projector) - for name, data in projector.items(): - name = get_tensor_name(name) - # pw and dw conv ndim==4 - if data.ndim == 2 or data.ndim == 4: - data = data.squeeze().numpy().astype(np.float16) - else: - data = data.squeeze().numpy().astype(np.float32) - - fout.add_tensor(name, data) - - print("Projector tensors added\n") - -state_dict = model.state_dict() -for name, data in state_dict.items(): - if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector): - # we don't need this - print(f"skipping parameter: {name}") - continue - - name = get_tensor_name(name) - data = data.squeeze().numpy() - - n_dims = len(data.shape) - - # ftype == 0 -> float32, ftype == 1 -> float16 - ftype_cur = 0 - if n_dims == 4: - print(f"tensor {name} is always saved in f16") - data = data.astype(np.float16) - ftype_cur = 1 - elif ftype == 1: - if name[-7:] == ".weight" and n_dims == 2: - print(" Converting to float16") - data = data.astype(np.float16) - ftype_cur = 1 - else: - print(" Converting to float32") - data = data.astype(np.float32) - ftype_cur = 0 - else: - if data.dtype != np.float32: - print(" Converting to float32") - data = data.astype(np.float32) - ftype_cur = 0 - - print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") - fout.add_tensor(name, data) - - -fout.write_header_to_file() -fout.write_kv_data_to_file() -fout.write_tensors_to_file() -fout.close() - -print("Done. Output file: " + fname_out) |