summaryrefslogtreecommitdiff
path: root/examples/llava/convert-image-encoder-to-gguf.py
diff options
context:
space:
mode:
Diffstat (limited to 'examples/llava/convert-image-encoder-to-gguf.py')
-rw-r--r--examples/llava/convert-image-encoder-to-gguf.py2
1 files changed, 1 insertions, 1 deletions
diff --git a/examples/llava/convert-image-encoder-to-gguf.py b/examples/llava/convert-image-encoder-to-gguf.py
index 729aaef8..03688e0e 100644
--- a/examples/llava/convert-image-encoder-to-gguf.py
+++ b/examples/llava/convert-image-encoder-to-gguf.py
@@ -51,7 +51,7 @@ def bytes_to_unicode():
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
- This is a signficant percentage of your normal, say, 32K bpe vocab.
+ This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""