diff options
Diffstat (limited to 'examples/llava/llava-utils.h')
-rw-r--r-- | examples/llava/llava-utils.h | 147 |
1 files changed, 0 insertions, 147 deletions
diff --git a/examples/llava/llava-utils.h b/examples/llava/llava-utils.h deleted file mode 100644 index 320c7196..00000000 --- a/examples/llava/llava-utils.h +++ /dev/null @@ -1,147 +0,0 @@ -#pragma once - -// this one and clip lib will be eventually merged to a single lib, let's keep it this way for now - -#include "common.h" -#include "llama.h" - -#include <cstdio> -#include <cstdlib> -#include <vector> - -inline bool eval_image_embd(llama_context * ctx_llama, float * embd, int N, int n_batch, int * n_past) { - int n_embd = llama_n_embd(llama_get_model(ctx_llama)); - - for (int i = 0; i < N; i += n_batch) { - int n_eval = N - i; - if (n_eval > n_batch) { - n_eval = n_batch; - } - llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, }; - if (llama_decode(ctx_llama, batch)) { - fprintf(stderr, "%s : failed to eval\n", __func__); - return false; - } - *n_past += n_eval; - } - return true; -} - -inline bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) { - int N = (int) tokens.size(); - for (int i = 0; i < N; i += n_batch) { - int n_eval = (int) tokens.size() - i; - if (n_eval > n_batch) { - n_eval = n_batch; - } - if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) { - fprintf(stderr, "%s : failed to eval\n", __func__); - return false; - } - *n_past += n_eval; - } - return true; -} - -inline bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) { - std::vector<llama_token> tokens; - tokens.push_back(id); - return eval_tokens(ctx_llama, tokens, 1, n_past); -} - -inline bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){ - std::string str2 = str; - std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos); - eval_tokens(ctx_llama, embd_inp, n_batch, n_past); - return true; -} - -// TODO: use common/sampling.h -inline llama_token sample_id(llama_context * ctx_llama, gpt_params & params) { - auto & sparams = params.sparams; - - // out of user input, sample next token - const float temp = sparams.temp; - const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : sparams.top_k; - const float top_p = sparams.top_p; - const float tfs_z = sparams.tfs_z; - const float typical_p = sparams.typical_p; - // const int32_t repeat_last_n = sparams.repeat_last_n < 0 ? n_ctx : sparams.repeat_last_n; - // const float repeat_penalty = sparams.repeat_penalty; - // const float alpha_presence = sparams.presence_penalty; - // const float alpha_frequency = sparams.frequency_penalty; - const int mirostat = sparams.mirostat; - const float mirostat_tau = sparams.mirostat_tau; - const float mirostat_eta = sparams.mirostat_eta; - // const bool penalize_nl = sparams.penalize_nl; - - llama_token id = 0; - { - auto logits = llama_get_logits(ctx_llama); - auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama)); - - // Apply params.logit_bias map - for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) { - logits[it->first] += it->second; - } - - std::vector<llama_token_data> candidates; - candidates.reserve(n_vocab); - for (llama_token token_id = 0; token_id < n_vocab; token_id++) { - candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); - } - - llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; - - // TODO: Apply penalties - // float nl_logit = logits[llama_token_nl(ctx)]; - // auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx); - // llama_sample_repetition_penalty(ctx, &candidates_p, - // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, - // last_n_repeat, repeat_penalty); - // llama_sample_frequency_and_presence_penalties(ctx, &candidates_p, - // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, - // last_n_repeat, alpha_frequency, alpha_presence); - // if (!penalize_nl) { - // logits[llama_token_nl(ctx)] = nl_logit; - // } - - if (temp <= 0) { - // Greedy sampling - id = llama_sample_token_greedy(ctx_llama, &candidates_p); - } else { - if (mirostat == 1) { - static float mirostat_mu = 2.0f * mirostat_tau; - const int mirostat_m = 100; - llama_sample_temp(ctx_llama, &candidates_p, temp); - id = llama_sample_token_mirostat(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); - } else if (mirostat == 2) { - static float mirostat_mu = 2.0f * mirostat_tau; - llama_sample_temp(ctx_llama, &candidates_p, temp); - id = llama_sample_token_mirostat_v2(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); - } else { - // Temperature sampling - llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1); - llama_sample_tail_free(ctx_llama, &candidates_p, tfs_z, 1); - llama_sample_typical(ctx_llama, &candidates_p, typical_p, 1); - llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1); - llama_sample_temp(ctx_llama, &candidates_p, temp); - id = llama_sample_token(ctx_llama, &candidates_p); - } - } - } - - return id; -} - -inline const char * sample(struct llama_context * ctx_llama, gpt_params & params, int * n_past) { - int id = sample_id(ctx_llama, params); - static std::string ret; - if (id == llama_token_eos(llama_get_model(ctx_llama))) { - ret = "</s>"; - } else { - ret = llama_token_to_piece(ctx_llama, id); - } - eval_id(ctx_llama, id, n_past); - return ret.c_str(); -} |