summaryrefslogtreecommitdiff
path: root/examples/llava/llava-utils.h
diff options
context:
space:
mode:
Diffstat (limited to 'examples/llava/llava-utils.h')
-rw-r--r--examples/llava/llava-utils.h147
1 files changed, 0 insertions, 147 deletions
diff --git a/examples/llava/llava-utils.h b/examples/llava/llava-utils.h
deleted file mode 100644
index 320c7196..00000000
--- a/examples/llava/llava-utils.h
+++ /dev/null
@@ -1,147 +0,0 @@
-#pragma once
-
-// this one and clip lib will be eventually merged to a single lib, let's keep it this way for now
-
-#include "common.h"
-#include "llama.h"
-
-#include <cstdio>
-#include <cstdlib>
-#include <vector>
-
-inline bool eval_image_embd(llama_context * ctx_llama, float * embd, int N, int n_batch, int * n_past) {
- int n_embd = llama_n_embd(llama_get_model(ctx_llama));
-
- for (int i = 0; i < N; i += n_batch) {
- int n_eval = N - i;
- if (n_eval > n_batch) {
- n_eval = n_batch;
- }
- llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
- if (llama_decode(ctx_llama, batch)) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return false;
- }
- *n_past += n_eval;
- }
- return true;
-}
-
-inline bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
- int N = (int) tokens.size();
- for (int i = 0; i < N; i += n_batch) {
- int n_eval = (int) tokens.size() - i;
- if (n_eval > n_batch) {
- n_eval = n_batch;
- }
- if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return false;
- }
- *n_past += n_eval;
- }
- return true;
-}
-
-inline bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
- std::vector<llama_token> tokens;
- tokens.push_back(id);
- return eval_tokens(ctx_llama, tokens, 1, n_past);
-}
-
-inline bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
- std::string str2 = str;
- std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos);
- eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
- return true;
-}
-
-// TODO: use common/sampling.h
-inline llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
- auto & sparams = params.sparams;
-
- // out of user input, sample next token
- const float temp = sparams.temp;
- const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : sparams.top_k;
- const float top_p = sparams.top_p;
- const float tfs_z = sparams.tfs_z;
- const float typical_p = sparams.typical_p;
- // const int32_t repeat_last_n = sparams.repeat_last_n < 0 ? n_ctx : sparams.repeat_last_n;
- // const float repeat_penalty = sparams.repeat_penalty;
- // const float alpha_presence = sparams.presence_penalty;
- // const float alpha_frequency = sparams.frequency_penalty;
- const int mirostat = sparams.mirostat;
- const float mirostat_tau = sparams.mirostat_tau;
- const float mirostat_eta = sparams.mirostat_eta;
- // const bool penalize_nl = sparams.penalize_nl;
-
- llama_token id = 0;
- {
- auto logits = llama_get_logits(ctx_llama);
- auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
-
- // Apply params.logit_bias map
- for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
- logits[it->first] += it->second;
- }
-
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
-
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
-
- // TODO: Apply penalties
- // float nl_logit = logits[llama_token_nl(ctx)];
- // auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
- // llama_sample_repetition_penalty(ctx, &candidates_p,
- // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- // last_n_repeat, repeat_penalty);
- // llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
- // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- // last_n_repeat, alpha_frequency, alpha_presence);
- // if (!penalize_nl) {
- // logits[llama_token_nl(ctx)] = nl_logit;
- // }
-
- if (temp <= 0) {
- // Greedy sampling
- id = llama_sample_token_greedy(ctx_llama, &candidates_p);
- } else {
- if (mirostat == 1) {
- static float mirostat_mu = 2.0f * mirostat_tau;
- const int mirostat_m = 100;
- llama_sample_temp(ctx_llama, &candidates_p, temp);
- id = llama_sample_token_mirostat(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
- } else if (mirostat == 2) {
- static float mirostat_mu = 2.0f * mirostat_tau;
- llama_sample_temp(ctx_llama, &candidates_p, temp);
- id = llama_sample_token_mirostat_v2(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
- } else {
- // Temperature sampling
- llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
- llama_sample_tail_free(ctx_llama, &candidates_p, tfs_z, 1);
- llama_sample_typical(ctx_llama, &candidates_p, typical_p, 1);
- llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
- llama_sample_temp(ctx_llama, &candidates_p, temp);
- id = llama_sample_token(ctx_llama, &candidates_p);
- }
- }
- }
-
- return id;
-}
-
-inline const char * sample(struct llama_context * ctx_llama, gpt_params & params, int * n_past) {
- int id = sample_id(ctx_llama, params);
- static std::string ret;
- if (id == llama_token_eos(llama_get_model(ctx_llama))) {
- ret = "</s>";
- } else {
- ret = llama_token_to_piece(ctx_llama, id);
- }
- eval_id(ctx_llama, id, n_past);
- return ret.c_str();
-}