diff options
Diffstat (limited to 'examples/llava/llava.cpp')
-rw-r--r-- | examples/llava/llava.cpp | 296 |
1 files changed, 280 insertions, 16 deletions
diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp index d42e7582..22953417 100644 --- a/examples/llava/llava.cpp +++ b/examples/llava/llava.cpp @@ -2,32 +2,296 @@ #include "common.h" #include "llama.h" #include "llava.h" +#include "base64.hpp" #include <cstdio> #include <cstdlib> #include <vector> +#include <numeric> + +// RGB uint8 image +struct clip_image_u8 { + int nx; + int ny; + + std::vector<uint8_t> buf; +}; + +// RGB float32 image (NHWC) +// Memory layout: RGBRGBRGB... +struct clip_image_f32 { + int nx; + int ny; + + std::vector<float> buf; +}; + +struct clip_image_grid_shape { + int first; + int second; +}; + +/** + * Selects the best resolution from a list of possible resolutions based on the original size. + * + * @param original_size The original size of the image in the format (width, height). + * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. + * @return The best fit resolution in the format (width, height). + */ +static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) { + int original_width = original_size.first; + int original_height = original_size.second; + + std::pair<int, int> best_fit; + int max_effective_resolution = 0; + int min_wasted_resolution = std::numeric_limits<int>::max(); + + for (const auto& resolution : possible_resolutions) { + int width = resolution.first; + int height = resolution.second; + float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height); + int downscaled_width = static_cast<int>(original_width * scale); + int downscaled_height = static_cast<int>(original_height * scale); + int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height); + int wasted_resolution = (width * height) - effective_resolution; + // fprintf(stderr, "resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution); + if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) { + max_effective_resolution = effective_resolution; + min_wasted_resolution = wasted_resolution; + best_fit = resolution; + } + } + + return best_fit; +} + +/** + * @brief Get the anyres image grid shape object + * + * @param image_size + * @param grid_pinpoints + * @param image_patch_size + * @return <int, int> + */ +static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) { + /** + Conversion from gguf flat array to vector: + std::vector<std::pair<int, int>> possible_resolutions; + for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) { + possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]}); + } + */ + auto best_resolution = select_best_resolution(image_size, grid_pinpoints); + return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size}; +} + +// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out) +static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) { + struct { + struct ggml_tensor * newline; + struct ggml_context * ctx; + } model; + + const int32_t image_size = clip_image_size(ctx_clip); + const int32_t patch_size = clip_patch_size(ctx_clip); + + int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches) + + int num_patches_width = grid_shape.first; // grid 1-4 + int num_patches_height = grid_shape.second; // grid 1-4 + + const size_t num_images = num_patches_width + num_patches_height + 1; + + // TODO: size calculation is not calculated - it's only tens of MB + size_t ctx_size = 0; + + { + ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features + ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32); + } + + struct ggml_init_params params { + /*.mem_size =*/ ctx_size, + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API + }; + + // Python reference code for full unpad: + /* + base_image_feature = image_feature[0] + image_feature = image_feature[1:] + image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() + image_feature = image_feature.flatten(1, 2).flatten(2, 3) + image_feature = unpad_image(image_feature, image_sizes[image_idx]) + image_feature = torch.cat(( + image_feature, + self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1) + ), dim=-1) + image_feature = image_feature.flatten(1, 2).transpose(0, 1) + image_feature = torch.cat((base_image_feature, image_feature), dim=0) + */ + // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval. + // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet. + // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them. + // Once all images are processed to prepended the base_image_features without any changes. + + // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling)) + /* + image_feature = image_feature.view(2, 2, 24, 24, 4096) + image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous() + image_feature = image_feature.view(2, 24, 2, 24, 4096) + image_feature = image_feature.flatten(0, 3) + + // Reshape to 4D tensor by merging the last two dimensions + image_feature = image_feature.view(2, 2, 24, 24*4096) + image_feature = image_feature.permute(0, 2, 1, 3).contiguous() + image_feature = image_feature.view(-1, 4096) + */ + + model.ctx = ggml_init(params); + + ggml_tensor * newline_tmp = clip_get_newline_tensor(ctx_clip); + model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]); + if (newline_tmp->backend != GGML_BACKEND_CPU) { + if (newline_tmp->buffer == NULL) { + printf("newline_tmp tensor buffer is NULL\n"); + } + ggml_backend_tensor_get(newline_tmp, model.newline->data, 0, ggml_nbytes(newline_tmp)); + } else { + model.newline->data = newline_tmp->data; + if (model.newline->data == NULL) { + printf("newline_tmp tensor data is NULL\n"); + } + } + + struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4 + // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false); + // fill it with the image embeddings, ignoring the base + for (size_t i = 1; i < num_images; i++) { + size_t offset = (i-1) * clip_embd_nbytes(ctx_clip); + memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip)); + } + + struct ggml_cgraph * gf = ggml_new_graph(model.ctx); + size_t size_ele = ggml_type_size(GGML_TYPE_F32); + + struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features, + num_patches_per_side * clip_n_mmproj_embd(ctx_clip), + num_patches_per_side, + num_patches_width, + num_patches_height, + size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip), + size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side, + size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0); + // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false); + struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3)); + /** + At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings + image_feature = torch.cat(( + image_feature, + self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device) + ), dim=-1) + * + */ + + // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false); + struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0); + // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false); + ggml_build_forward_expand(gf, flatten); + ggml_graph_compute_with_ctx(model.ctx, gf, 1); + struct ggml_tensor* result = gf->nodes[gf->n_nodes - 1]; + + memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context + // append without newline tokens (default behavior in llava_arch when not using unpad ): + memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches + *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip)); + + // Debug: Test single segments + // Current findings: sending base image, sending a segment embedding all works similar to python + // However, permuted embeddings do not work yet (stride issue?) + // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context + // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context + // *n_img_pos_out=576; + + ggml_free(model.ctx); + return true; +} -#include "base64.hpp" static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) { - clip_image_f32 * img_res = clip_image_f32_init(); - if (!clip_image_preprocess(ctx_clip, img, img_res, /*pad2square =*/ true)) { + // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336 + clip_image_f32_batch img_res_v; + img_res_v.size = 0; + img_res_v.data = nullptr; + if (!clip_image_preprocess(ctx_clip, img, img_res_v)) { fprintf(stderr, "%s: unable to preprocess image\n", __func__); - clip_image_f32_free(img_res); + delete[] img_res_v.data; return false; } - *n_img_pos = clip_n_patches(ctx_clip); - const int64_t t_img_enc_start_us = ggml_time_us(); - bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd); - clip_image_f32_free(img_res); - if (!encoded) { - fprintf(stderr, "Unable to encode image\n"); - return false; + const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip); + + if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) { + // flat / default llava-1.5 type embedding + *n_img_pos = clip_n_patches(ctx_clip); + bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096 + delete[] img_res_v.data; + if (!encoded) { + fprintf(stderr, "Unable to encode image\n"); + + return false; + } + } else { + // spatial_unpad llava-1.6 type embedding + // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working + std::vector<float *> image_embd_v; + image_embd_v.resize(img_res_v.size); + for (size_t i = 0; i < img_res_v.size; i++) { + image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184 + const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside + if (!encoded) { + fprintf(stderr, "Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size); + return false; + } + } + const int64_t t_img_enc_batch_us = ggml_time_us(); + printf("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0); + + const int32_t * image_grid = clip_image_grid(ctx_clip); + + std::vector<std::pair<int, int>> grid_pinpoints; + for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) { + grid_pinpoints.push_back({image_grid[i], image_grid[i+1]}); + } + + // free all img_res_v - not needed anymore + delete[] img_res_v.data; + img_res_v.size = 0; + img_res_v.data = nullptr; + + const int32_t image_size = clip_image_size(ctx_clip); + + struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size); + + int n_img_pos_out; + clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out); + *n_img_pos = n_img_pos_out; + + for (size_t i = 0; i < image_embd_v.size(); i++) { + free(image_embd_v[i]); + } + image_embd_v.clear(); + + // debug image/segment/normalization content: + // clip_image_u8 * tmp = clip_image_u8_init(); + // clip_image_convert_f32_to_u8(*image_feature, *tmp); + // clip_image_save_to_bmp(*tmp, "image_feature.bmp"); } + printf("%s: image embedding created: %d tokens\n", __func__, *n_img_pos); + const int64_t t_img_enc_end_us = ggml_time_us(); float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0; @@ -48,7 +312,7 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * } static bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { - float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)); + float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model if (!image_embd) { fprintf(stderr, "Unable to allocate memory for image embeddings\n"); free(image_embd); @@ -85,7 +349,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_ return true; } -LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) { +struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) { clip_image_u8 * img = clip_image_u8_init(); if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) { clip_image_u8_free(img); @@ -142,7 +406,7 @@ static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long return true; } -LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) { +struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) { unsigned char* image_bytes; long image_bytes_length; auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length); @@ -151,13 +415,13 @@ LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct return NULL; } - auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length); + llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length); free(image_bytes); return embed; } -LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed) { +void llava_image_embed_free(struct llava_image_embed * embed) { free(embed->embed); free(embed); } |