summaryrefslogtreecommitdiff
path: root/examples/llava/minicpmv-cli.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/llava/minicpmv-cli.cpp')
-rw-r--r--examples/llava/minicpmv-cli.cpp309
1 files changed, 309 insertions, 0 deletions
diff --git a/examples/llava/minicpmv-cli.cpp b/examples/llava/minicpmv-cli.cpp
new file mode 100644
index 00000000..f951b57b
--- /dev/null
+++ b/examples/llava/minicpmv-cli.cpp
@@ -0,0 +1,309 @@
+#include "ggml.h"
+#include "log.h"
+#include "common.h"
+#include "clip.h"
+#include "llava.h"
+#include "llama.h"
+
+#include <cstdio>
+#include <cstdlib>
+#include <vector>
+
+struct llava_context {
+ struct clip_ctx * ctx_clip = NULL;
+ struct llama_context * ctx_llama = NULL;
+ struct llama_model * model = NULL;
+};
+
+static void show_additional_info(int /*argc*/, char ** argv) {
+ LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
+ LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
+}
+
+static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
+ (void) level;
+ (void) user_data;
+ LOG_TEE("%s", text);
+}
+
+static struct llama_model * llava_init(gpt_params * params) {
+ llama_backend_init();
+ llama_numa_init(params->numa);
+
+ llama_model_params model_params = llama_model_params_from_gpt_params(*params);
+
+ llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
+ if (model == NULL) {
+ LOG_TEE("%s: error: unable to load model\n" , __func__);
+ return NULL;
+ }
+ return model;
+}
+
+static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
+ auto prompt = params->prompt;
+ if (prompt.empty()) {
+ prompt = "describe the image in detail.";
+ }
+
+ llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
+ if (params->n_ctx < 2048) {
+ // warn user here, "Image processing requires at least 2048 context, setting context to 2048"
+ LOG_TEE("%s: warn: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
+ ctx_params.n_ctx = 2048;
+ } else {
+ ctx_params.n_ctx = params->n_ctx;
+ }
+
+ llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
+
+ if (ctx_llama == NULL) {
+ LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
+ return NULL;
+ }
+
+ auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
+
+ ctx_llava->ctx_llama = ctx_llama;
+ ctx_llava->model = model;
+ return ctx_llava;
+}
+
+static void llava_free(struct llava_context * ctx_llava) {
+ if (ctx_llava->ctx_clip) {
+ clip_free(ctx_llava->ctx_clip);
+ ctx_llava->ctx_clip = NULL;
+ }
+
+ llama_free(ctx_llava->ctx_llama);
+ llama_free_model(ctx_llava->model);
+ llama_backend_free();
+}
+
+static struct clip_ctx * clip_init_context(gpt_params * params) {
+ const char * clip_path = params->mmproj.c_str();
+
+ auto prompt = params->prompt;
+ if (prompt.empty()) {
+ prompt = "describe the image in detail.";
+ }
+ auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
+ return ctx_clip;
+}
+
+static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
+ int N = (int) tokens.size();
+ for (int i = 0; i < N; i += n_batch) {
+ int n_eval = (int) tokens.size() - i;
+ if (n_eval > n_batch) {
+ n_eval = n_batch;
+ }
+ if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
+ LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
+ return false;
+ }
+ *n_past += n_eval;
+ }
+ return true;
+}
+
+static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
+ std::vector<llama_token> tokens;
+ tokens.push_back(id);
+ return eval_tokens(ctx_llama, tokens, 1, n_past);
+}
+
+static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
+ std::string str2 = str;
+ std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
+ return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
+}
+
+static void process_eval_image_embed(struct llava_context * ctx_llava, const struct llava_image_embed * embeds, int n_batch, int * n_past, int idx) {
+ float * image_embed = (float *)malloc(clip_embd_nbytes(ctx_llava->ctx_clip));
+ std::memcpy(image_embed, embeds->embed + idx * clip_n_patches(ctx_llava->ctx_clip) * clip_n_mmproj_embd(ctx_llava->ctx_clip), clip_embd_nbytes(ctx_llava->ctx_clip));
+
+ auto slice_embed = (llava_image_embed*)malloc(sizeof(llava_image_embed));
+ slice_embed->embed = image_embed;
+ slice_embed->n_image_pos = clip_n_patches(ctx_llava->ctx_clip);
+ llava_eval_image_embed(ctx_llava->ctx_llama, slice_embed, n_batch, n_past);
+ llava_image_embed_free(slice_embed);
+}
+
+static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, gpt_params * params, int &n_past) {
+ std::string system_prompt;
+ int idx = 0;
+ int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
+ system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
+ LOG_TEE("%s: image token past: %d\n", __func__, n_past);
+ eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
+ process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
+ eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
+ if (num_image_embeds > 1) {
+ size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
+ eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
+ for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
+ for (size_t j = 0; j < num_image_embeds_col; ++j) {
+ eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
+ process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
+ eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
+ if (j == num_image_embeds_col - 1) {
+ eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
+ }
+ }
+ }
+ eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
+ }
+ LOG_TEE("%s: image token past: %d\n", __func__, n_past);
+}
+
+static const char * sample(struct llama_sampling_context * ctx_sampling,
+ struct llama_context * ctx_llama,
+ int * n_past) {
+ const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
+ llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
+ static std::string ret;
+ if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
+ ret = "</s>";
+ } else {
+ ret = llama_token_to_piece(ctx_llama, id);
+ }
+ eval_id(ctx_llama, id, n_past);
+ return ret.c_str();
+}
+
+static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
+ auto ctx_clip = clip_init_context(params);
+ auto embeds = llava_image_embed_make_with_filename(ctx_clip, params->n_threads, fname.c_str());
+ if (!embeds) {
+ std::cerr << "error: failed to load image " << fname << ". Terminating\n\n";
+ return NULL;
+ }
+
+ // process the prompt
+ if (params->prompt.empty() && params->interactive == false) {
+ LOG_TEE("prompt should be given or interactive mode should be on");
+ return NULL;
+ }
+
+ auto model = llava_init(params);
+ if (model == NULL) {
+ fprintf(stderr, "%s: error: failed to init minicpmv model\n", __func__);
+ return NULL;
+ }
+ const int64_t t_llava_init_start_us = ggml_time_us();
+ auto ctx_llava = llava_init_context(params, model);
+ ctx_llava->ctx_clip = ctx_clip;
+ const int64_t t_llava_init_end_us = ggml_time_us();
+ float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0;
+ LOG_TEE("\n%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms);
+
+ const int64_t t_process_image_start_us = ggml_time_us();
+ process_image(ctx_llava, embeds, params, n_past);
+ const int64_t t_process_image_end_us = ggml_time_us();
+ float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0;
+ LOG_TEE("\n%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms);
+
+ llava_image_embed_free(embeds);
+ return ctx_llava;
+}
+
+static struct llama_sampling_context * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
+ std::string user_prompt = prompt;
+ if (!is_first) user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt;
+
+ eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
+ eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false);
+ // generate the response
+
+ LOG_TEE("\n");
+
+ struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
+ return ctx_sampling;
+}
+
+static const char * llama_loop(struct llava_context * ctx_llava,struct llama_sampling_context * ctx_sampling, int &n_past){
+
+ const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
+ return tmp;
+}
+
+int main(int argc, char ** argv) {
+ ggml_time_init();
+
+ gpt_params params;
+
+ if (!gpt_params_parse(argc, argv, params)) {
+ show_additional_info(argc, argv);
+ return 1;
+ }
+
+#ifndef LOG_DISABLE_LOGS
+ log_set_target(log_filename_generator("llava", "log"));
+ LOG_TEE("Log start\n");
+ log_dump_cmdline(argc, argv);
+ llama_log_set(llama_log_callback_logTee, nullptr);
+#endif // LOG_DISABLE_LOGS
+
+ if (params.mmproj.empty() || (params.image.empty())) {
+ gpt_params_print_usage(argc, argv, params);
+ show_additional_info(argc, argv);
+ return 1;
+ }
+
+ for (auto & image : params.image) {
+ int n_past = 0;
+ auto ctx_llava = minicpmv_init(&params, image, n_past);
+
+ if (!params.prompt.empty()) {
+ LOG_TEE("<user>%s\n", params.prompt.c_str());
+ LOG_TEE("<assistant>");
+ auto ctx_sampling = llama_init(ctx_llava, &params, params.prompt.c_str(), n_past, true);
+ const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
+ std::string response = "";
+ bool have_tmp = false;
+ for (int i = 0; i < max_tgt_len; i++) {
+ auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
+ response += tmp;
+ if (strcmp(tmp, "</s>") == 0){
+ if(!have_tmp)continue;
+ else break;
+ }
+ if (strstr(tmp, "###")) break; // Yi-VL behavior
+ have_tmp = true;
+ printf("%s", tmp);
+ if (strstr(response.c_str(), "<user>")) break; // minicpm-v
+
+ fflush(stdout);
+ }
+ llama_sampling_free(ctx_sampling);
+ }else {
+ while (true) {
+ LOG_TEE("<user>");
+ std::string prompt;
+ std::getline(std::cin, prompt);
+ LOG_TEE("<assistant>");
+ auto ctx_sampling = llama_init(ctx_llava, &params, prompt, n_past, true);
+ const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
+ std::string response = "";
+ for (int i = 0; i < max_tgt_len; i++) {
+ auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
+ response += tmp;
+ if (strcmp(tmp, "</s>") == 0) break;
+ if (strstr(tmp, "###")) break; // Yi-VL behavior
+ printf("%s", tmp);// mistral llava-1.6
+ if (strstr(response.c_str(), "<user>")) break; // minicpm-v
+ fflush(stdout);
+ }
+ llama_sampling_free(ctx_sampling);
+ }
+ }
+ printf("\n");
+ llama_print_timings(ctx_llava->ctx_llama);
+
+ ctx_llava->model = NULL;
+ llava_free(ctx_llava);
+ }
+
+ return 0;
+}