diff options
Diffstat (limited to 'examples/llava')
-rw-r--r-- | examples/llava/MobileVLM-README.md | 16 | ||||
-rw-r--r-- | examples/llava/README.md | 20 | ||||
-rw-r--r-- | examples/llava/clip.cpp | 35 | ||||
-rw-r--r-- | examples/llava/convert_image_encoder_to_gguf.py (renamed from examples/llava/convert-image-encoder-to-gguf.py) | 10 | ||||
-rw-r--r-- | examples/llava/llava_surgery.py (renamed from examples/llava/llava-surgery.py) | 0 | ||||
-rw-r--r-- | examples/llava/llava_surgery_v2.py (renamed from examples/llava/llava-surgery-v2.py) | 10 | ||||
-rw-r--r-- | examples/llava/requirements.txt | 5 |
7 files changed, 56 insertions, 40 deletions
diff --git a/examples/llava/MobileVLM-README.md b/examples/llava/MobileVLM-README.md index 05a8207e..06a65fba 100644 --- a/examples/llava/MobileVLM-README.md +++ b/examples/llava/MobileVLM-README.md @@ -30,16 +30,16 @@ git clone https://huggingface.co/mtgv/MobileVLM-1.7B git clone https://huggingface.co/openai/clip-vit-large-patch14-336 ``` -2. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents: +2. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents: ```sh -python ./examples/llava/llava-surgery.py -m path/to/MobileVLM-1.7B +python ./examples/llava/llava_surgery.py -m path/to/MobileVLM-1.7B ``` -3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` (for **V2** please use `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF: +3. Use `convert_image_encoder_to_gguf.py` with `--projector-type ldp` (for **V2** please use `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF: ```sh -python ./examples/llava/convert-image-encoder-to-gguf \ +python ./examples/llava/convert_image_encoder_to_gguf \ -m path/to/clip-vit-large-patch14-336 \ --llava-projector path/to/MobileVLM-1.7B/llava.projector \ --output-dir path/to/MobileVLM-1.7B \ @@ -47,17 +47,17 @@ python ./examples/llava/convert-image-encoder-to-gguf \ ``` ```sh -python ./examples/llava/convert-image-encoder-to-gguf \ +python ./examples/llava/convert_image_encoder_to_gguf \ -m path/to/clip-vit-large-patch14-336 \ --llava-projector path/to/MobileVLM-1.7B_V2/llava.projector \ --output-dir path/to/MobileVLM-1.7B_V2 \ --projector-type ldpv2 ``` -4. Use `examples/convert-legacy-llama.py` to convert the LLaMA part of LLaVA to GGUF: +4. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF: ```sh -python ./examples/convert-legacy-llama.py path/to/MobileVLM-1.7B +python ./examples/convert_legacy_llama.py path/to/MobileVLM-1.7B ``` 5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k` @@ -194,7 +194,7 @@ llama_print_timings: total time = 44411.01 ms / 377 tokens ## Orin compile and run ### compile ```sh -make LLAMA_CUDA=1 CUDA_DOCKER_ARCH=sm_87 LLAMA_CUDA_F16=1 -j 32 +make GGML_CUDA=1 CUDA_DOCKER_ARCH=sm_87 GGML_CUDA_F16=1 -j 32 ``` ### run on Orin ### case 1 diff --git a/examples/llava/README.md b/examples/llava/README.md index f4554de6..01245136 100644 --- a/examples/llava/README.md +++ b/examples/llava/README.md @@ -38,22 +38,22 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336 pip install -r examples/llava/requirements.txt ``` -3. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents: +3. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents: ```sh -python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b +python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b ``` -4. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF: +4. Use `convert_image_encoder_to_gguf.py` to convert the LLaVA image encoder to GGUF: ```sh -python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b +python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b ``` -5. Use `examples/convert-legacy-llama.py` to convert the LLaMA part of LLaVA to GGUF: +5. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF: ```sh -python ./examples/convert-legacy-llama.py ../llava-v1.5-7b --skip-unknown +python ./examples/convert_legacy_llama.py ../llava-v1.5-7b --skip-unknown ``` Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory. @@ -70,9 +70,9 @@ git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b pip install -r examples/llava/requirements.txt ``` -3) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models: +3) Use `llava_surgery_v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models: ```console -python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/ +python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/ ``` - you will find a llava.projector and a llava.clip file in your model directory @@ -86,13 +86,13 @@ curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.jso 5) Create the visual gguf model: ```console -python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision +python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision ``` - This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP 6) Then convert the model to gguf format: ```console -python ./examples/convert-legacy-llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown +python ./examples/convert_legacy_llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown ``` 7) And finally we can run the llava cli using the 1.6 model version: diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index 95fbe3d0..d23e282f 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -16,6 +16,10 @@ #include "ggml-metal.h" #endif +#ifdef GGML_USE_CANN +#include "ggml-cann.h" +#endif + #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" @@ -1001,6 +1005,11 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { LOG_TEE("%s: CLIP using Metal backend\n", __func__); #endif +#ifdef GGML_USE_CANN + new_clip->backend = ggml_backend_cann_init(0); + LOG_TEE("%s: CLIP using CANN backend\n", __func__); +#endif + if (!new_clip->backend) { new_clip->backend = ggml_backend_cpu_init(); @@ -1121,20 +1130,20 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { } if (n < 32) hparams.image_grid_pinpoints[n] = 0; - } catch (std::runtime_error & e) { + } catch (std::runtime_error & /*e*/) { hparams.image_grid_pinpoints[0]=0; } try { int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE); strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx)); - } catch (std::runtime_error & e) { + } catch (std::runtime_error & /*e*/) { strcpy(hparams.mm_patch_merge_type, "flat"); } try { hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6 - } catch(const std::exception& e) { + } catch(const std::exception& /*e*/) { hparams.image_crop_resolution = hparams.image_size; } @@ -1173,7 +1182,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { try { vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD); new_clip->has_class_embedding = true; - } catch (const std::exception& e) { + } catch (const std::exception& /*e*/) { new_clip->has_class_embedding = false; } @@ -1181,7 +1190,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight")); vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias")); new_clip->has_pre_norm = true; - } catch (std::exception & e) { + } catch (std::exception & /*e*/) { new_clip->has_pre_norm = false; } @@ -1189,21 +1198,21 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight")); vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias")); new_clip->has_post_norm = true; - } catch (std::exception & e) { + } catch (std::exception & /*e*/) { new_clip->has_post_norm = false; } try { vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS); new_clip->has_patch_bias = true; - } catch (std::exception & e) { + } catch (std::exception & /*e*/) { new_clip->has_patch_bias = false; } try { vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD); vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v")); - } catch(const std::exception& e) { + } catch(const std::exception& /*e*/) { LOG_TEE("%s: failed to load vision model tensors\n", __func__); } @@ -1215,26 +1224,26 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { // Yi-type llava vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight")); vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias")); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & /*e*/) { } try { // missing in Yi-type llava vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight")); vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias")); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & /*e*/) { } try { // Yi-type llava vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight")); vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias")); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & /*e*/) { } try { // Yi-type llava vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight")); vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias")); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & /*e*/) { } try { vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE); // LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & /*e*/) { } } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) { // MobileVLM projection vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight")); diff --git a/examples/llava/convert-image-encoder-to-gguf.py b/examples/llava/convert_image_encoder_to_gguf.py index b00bf7c6..36f6b92f 100644 --- a/examples/llava/convert-image-encoder-to-gguf.py +++ b/examples/llava/convert_image_encoder_to_gguf.py @@ -185,6 +185,8 @@ else: fout.add_description("two-tower CLIP model") if has_text_encoder: + assert t_hparams is not None + assert tokens is not None # text_model hparams fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"]) fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"]) @@ -259,8 +261,8 @@ if has_vision_encoder: if processor is not None: - image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean - image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std + image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean # pyright: ignore[reportAttributeAccessIssue] + image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std # pyright: ignore[reportAttributeAccessIssue] else: image_mean = args.image_mean if args.image_mean is not None else default_image_mean image_std = args.image_std if args.image_std is not None else default_image_std @@ -272,7 +274,7 @@ fout.add_bool("clip.use_gelu", use_gelu) if has_llava_projector: - model.vision_model.encoder.layers.pop(-1) + model.vision_model.encoder.layers.pop(-1) # pyright: ignore[reportAttributeAccessIssue] projector = torch.load(args.llava_projector) for name, data in projector.items(): name = get_tensor_name(name) @@ -286,7 +288,7 @@ if has_llava_projector: print("Projector tensors added\n") -state_dict = model.state_dict() +state_dict = model.state_dict() # pyright: ignore[reportAttributeAccessIssue] for name, data in state_dict.items(): if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector): # we don't need this diff --git a/examples/llava/llava-surgery.py b/examples/llava/llava_surgery.py index 4f2da3be..4f2da3be 100644 --- a/examples/llava/llava-surgery.py +++ b/examples/llava/llava_surgery.py diff --git a/examples/llava/llava-surgery-v2.py b/examples/llava/llava_surgery_v2.py index eb56d698..2d5b32fe 100644 --- a/examples/llava/llava-surgery-v2.py +++ b/examples/llava/llava_surgery_v2.py @@ -2,7 +2,9 @@ import argparse import glob import os import torch -from safetensors.torch import load as safe_load, save as safe_save, safe_open, save_file +from safetensors import safe_open +from safetensors.torch import save_file +from typing import Any, ContextManager, cast # Function to determine if file is a SafeTensor file def is_safetensor_file(file_path): @@ -13,7 +15,7 @@ def is_safetensor_file(file_path): def load_model(file_path): if is_safetensor_file(file_path): tensors = {} - with safe_open(file_path, framework="pt", device="cpu") as f: + with cast(ContextManager[Any], safe_open(file_path, framework="pt", device="cpu")) as f: for key in f.keys(): tensors[key] = f.get_tensor(key).clone() # output shape @@ -134,7 +136,7 @@ if len(mm_tensors) == 0: if last_checkpoint is not None: for k, v in last_checkpoint.items(): print(k) - print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint)} tensors.") + print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint) if last_checkpoint is not None else 0} tensors.") print("No tensors found. Is this a LLaVA model?") exit() @@ -143,8 +145,10 @@ print(f"Found additional {len(first_mm_tensors)} tensors to extract.") # projector = {name: checkpoint.[name].float() for name in mm_tensors} projector = {} for name in mm_tensors: + assert last_checkpoint is not None projector[name] = last_checkpoint[name].float() for name in first_mm_tensors: + assert first_checkpoint is not None projector[name] = first_checkpoint[name].float() if len(projector) > 0: diff --git a/examples/llava/requirements.txt b/examples/llava/requirements.txt index 17cb4d5e..fbfd0cdd 100644 --- a/examples/llava/requirements.txt +++ b/examples/llava/requirements.txt @@ -1,3 +1,4 @@ --r ../../requirements/requirements-convert-legacy-llama.txt +-r ../../requirements/requirements-convert_legacy_llama.txt +--extra-index-url https://download.pytorch.org/whl/cpu pillow~=10.2.0 -torch~=2.1.1 +torch~=2.2.1 |