diff options
Diffstat (limited to 'examples/lookup/lookup-stats.cpp')
-rw-r--r-- | examples/lookup/lookup-stats.cpp | 163 |
1 files changed, 163 insertions, 0 deletions
diff --git a/examples/lookup/lookup-stats.cpp b/examples/lookup/lookup-stats.cpp new file mode 100644 index 00000000..31f22777 --- /dev/null +++ b/examples/lookup/lookup-stats.cpp @@ -0,0 +1,163 @@ +#include "ggml.h" +#include "common.h" +#include "llama.h" +#include "log.h" +#include "ngram-cache.h" + +#include <cmath> +#include <cstdint> +#include <cstdio> +#include <fstream> +#include <string> +#include <vector> +#include <unordered_map> + +int main(int argc, char ** argv){ + gpt_params params; + + if (!gpt_params_parse(argc, argv, params)) { + return 1; + } + + const int n_draft = params.n_draft; + + // init llama.cpp + llama_backend_init(); + llama_numa_init(params.numa); + + llama_model * model = NULL; + llama_context * ctx = NULL; + + // load the model + std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_set_rng_seed(ctx, params.seed); + GGML_ASSERT(llama_n_vocab(model) < (1 << 16)); + + // tokenize the prompt + const bool add_bos = llama_should_add_bos_token(model); + LOG("add_bos tgt: %d\n", add_bos); + + std::vector<llama_token> inp; + inp = ::llama_tokenize(ctx, params.prompt, add_bos, true); + + llama_ngram_cache ngram_cache_context; + llama_ngram_cache ngram_cache_dynamic; + llama_ngram_cache ngram_cache_static; + int64_t t_draft_flat_us = 0; + int64_t t_draft_us = 0; + + { + const int64_t t_start_draft_us = ggml_time_us(); + + if (!params.lookup_cache_static.empty()) { + try { + ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static); + } catch (std::ifstream::failure const &) { + fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str()); + exit(1); + } + } + + if (!params.lookup_cache_dynamic.empty()) { + try { + ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic); + } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program + } + + t_draft_flat_us += ggml_time_us() - t_start_draft_us; + } + + const int n_input = inp.size(); + const int n_ctx = params.n_ctx; + + int n_drafted = 0; + int n_accept = 0; + + const int64_t t_start_ms = ggml_time_ms(); + + // Iterate over input tokens in chunks of size n_ctx. + // Each chunk is treated as if a sequential generation but with pre-determined tokens to ensure reproducibility. + for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) { + const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx); + std::vector<llama_token> pseudo_output; + pseudo_output.push_back(inp_slice[0]); + + while ((int) pseudo_output.size() < n_ctx) { + // Simulate drafting and decoding from draft: + std::vector<llama_token> draft; + draft.push_back(pseudo_output.back()); + + { + const int64_t t_start_draft_us = ggml_time_us(); + llama_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static); + t_draft_us += ggml_time_us() - t_start_draft_us; + } + + n_drafted += draft.size() - 1; + + for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) { + const llama_token ground_truth = inp_slice[pseudo_output.size()]; + const llama_token drafted = draft[j]; + + if (ground_truth != drafted) { + break; + } + + ++n_accept; + pseudo_output.push_back(ground_truth); + + { + const int64_t t_start_draft_us = ggml_time_us(); + llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false); + t_draft_us += ggml_time_us() - t_start_draft_us; + } + } + + // After each simulated batch decoding simulate the sampling of a single token: + if ((int) pseudo_output.size() < n_ctx) { + pseudo_output.push_back(inp_slice[pseudo_output.size()]); + { + const int64_t t_start_draft_us = ggml_time_us(); + llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false); + t_draft_us += ggml_time_us() - t_start_draft_us; + } + } + + draft.erase(draft.begin()); + + } + if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) { + const int64_t t_now_ms = ggml_time_ms(); + const int64_t eta_ms = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start; + const int64_t eta_min = eta_ms / (60*1000); + const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000; + + LOG_TEE("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s); + } + + // After each chunk, update the dynamic ngram cache with the context ngram cache: + llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context); + ngram_cache_context.clear(); + } + + LOG_TEE("\n"); + + LOG_TEE("\n"); + LOG_TEE("n_draft = %d\n", n_draft); + LOG_TEE("n_predict = %d\n", n_input - n_input % n_ctx); + LOG_TEE("n_drafted = %d\n", n_drafted); + LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3); + LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n", + t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us)); + LOG_TEE("n_accept = %d\n", n_accept); + LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); + + llama_free(ctx); + llama_free_model(model); + + llama_backend_free(); + + fprintf(stderr, "\n\n"); + + return 0; +} |