summaryrefslogtreecommitdiff
path: root/examples/lookup/lookup-stats.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/lookup/lookup-stats.cpp')
-rw-r--r--examples/lookup/lookup-stats.cpp163
1 files changed, 163 insertions, 0 deletions
diff --git a/examples/lookup/lookup-stats.cpp b/examples/lookup/lookup-stats.cpp
new file mode 100644
index 00000000..31f22777
--- /dev/null
+++ b/examples/lookup/lookup-stats.cpp
@@ -0,0 +1,163 @@
+#include "ggml.h"
+#include "common.h"
+#include "llama.h"
+#include "log.h"
+#include "ngram-cache.h"
+
+#include <cmath>
+#include <cstdint>
+#include <cstdio>
+#include <fstream>
+#include <string>
+#include <vector>
+#include <unordered_map>
+
+int main(int argc, char ** argv){
+ gpt_params params;
+
+ if (!gpt_params_parse(argc, argv, params)) {
+ return 1;
+ }
+
+ const int n_draft = params.n_draft;
+
+ // init llama.cpp
+ llama_backend_init();
+ llama_numa_init(params.numa);
+
+ llama_model * model = NULL;
+ llama_context * ctx = NULL;
+
+ // load the model
+ std::tie(model, ctx) = llama_init_from_gpt_params(params);
+ llama_set_rng_seed(ctx, params.seed);
+ GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
+
+ // tokenize the prompt
+ const bool add_bos = llama_should_add_bos_token(model);
+ LOG("add_bos tgt: %d\n", add_bos);
+
+ std::vector<llama_token> inp;
+ inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
+
+ llama_ngram_cache ngram_cache_context;
+ llama_ngram_cache ngram_cache_dynamic;
+ llama_ngram_cache ngram_cache_static;
+ int64_t t_draft_flat_us = 0;
+ int64_t t_draft_us = 0;
+
+ {
+ const int64_t t_start_draft_us = ggml_time_us();
+
+ if (!params.lookup_cache_static.empty()) {
+ try {
+ ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
+ } catch (std::ifstream::failure const &) {
+ fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
+ exit(1);
+ }
+ }
+
+ if (!params.lookup_cache_dynamic.empty()) {
+ try {
+ ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
+ } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
+ }
+
+ t_draft_flat_us += ggml_time_us() - t_start_draft_us;
+ }
+
+ const int n_input = inp.size();
+ const int n_ctx = params.n_ctx;
+
+ int n_drafted = 0;
+ int n_accept = 0;
+
+ const int64_t t_start_ms = ggml_time_ms();
+
+ // Iterate over input tokens in chunks of size n_ctx.
+ // Each chunk is treated as if a sequential generation but with pre-determined tokens to ensure reproducibility.
+ for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) {
+ const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx);
+ std::vector<llama_token> pseudo_output;
+ pseudo_output.push_back(inp_slice[0]);
+
+ while ((int) pseudo_output.size() < n_ctx) {
+ // Simulate drafting and decoding from draft:
+ std::vector<llama_token> draft;
+ draft.push_back(pseudo_output.back());
+
+ {
+ const int64_t t_start_draft_us = ggml_time_us();
+ llama_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
+ t_draft_us += ggml_time_us() - t_start_draft_us;
+ }
+
+ n_drafted += draft.size() - 1;
+
+ for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) {
+ const llama_token ground_truth = inp_slice[pseudo_output.size()];
+ const llama_token drafted = draft[j];
+
+ if (ground_truth != drafted) {
+ break;
+ }
+
+ ++n_accept;
+ pseudo_output.push_back(ground_truth);
+
+ {
+ const int64_t t_start_draft_us = ggml_time_us();
+ llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
+ t_draft_us += ggml_time_us() - t_start_draft_us;
+ }
+ }
+
+ // After each simulated batch decoding simulate the sampling of a single token:
+ if ((int) pseudo_output.size() < n_ctx) {
+ pseudo_output.push_back(inp_slice[pseudo_output.size()]);
+ {
+ const int64_t t_start_draft_us = ggml_time_us();
+ llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
+ t_draft_us += ggml_time_us() - t_start_draft_us;
+ }
+ }
+
+ draft.erase(draft.begin());
+
+ }
+ if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) {
+ const int64_t t_now_ms = ggml_time_ms();
+ const int64_t eta_ms = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start;
+ const int64_t eta_min = eta_ms / (60*1000);
+ const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
+
+ LOG_TEE("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s);
+ }
+
+ // After each chunk, update the dynamic ngram cache with the context ngram cache:
+ llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
+ ngram_cache_context.clear();
+ }
+
+ LOG_TEE("\n");
+
+ LOG_TEE("\n");
+ LOG_TEE("n_draft = %d\n", n_draft);
+ LOG_TEE("n_predict = %d\n", n_input - n_input % n_ctx);
+ LOG_TEE("n_drafted = %d\n", n_drafted);
+ LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
+ LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
+ t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
+ LOG_TEE("n_accept = %d\n", n_accept);
+ LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
+
+ llama_free(ctx);
+ llama_free_model(model);
+
+ llama_backend_free();
+
+ fprintf(stderr, "\n\n");
+
+ return 0;
+}