diff options
Diffstat (limited to 'examples/pydantic-models-to-grammar-examples.py')
-rw-r--r-- | examples/pydantic-models-to-grammar-examples.py | 136 |
1 files changed, 136 insertions, 0 deletions
diff --git a/examples/pydantic-models-to-grammar-examples.py b/examples/pydantic-models-to-grammar-examples.py new file mode 100644 index 00000000..a8a4919c --- /dev/null +++ b/examples/pydantic-models-to-grammar-examples.py @@ -0,0 +1,136 @@ +# Function calling example using pydantic models. + +import json +from enum import Enum +from typing import Union, Optional + +import requests +from pydantic import BaseModel, Field + +import importlib +from pydantic_models_to_grammar import generate_gbnf_grammar_and_documentation + +# Function to get completion on the llama.cpp server with grammar. +def create_completion(prompt, grammar): + headers = {"Content-Type": "application/json"} + data = {"prompt": prompt, "grammar": grammar} + + response = requests.post("http://127.0.0.1:8080/completion", headers=headers, json=data) + data = response.json() + + print(data["content"]) + return data["content"] + + +# A function for the agent to send a message to the user. +class SendMessageToUser(BaseModel): + """ + Send a message to the User. + """ + chain_of_thought: str = Field(..., description="Your chain of thought while sending the message.") + message: str = Field(..., description="Message you want to send to the user.") + + def run(self): + print(self.message) + + +# Enum for the calculator function. +class MathOperation(Enum): + ADD = "add" + SUBTRACT = "subtract" + MULTIPLY = "multiply" + DIVIDE = "divide" + + +# Very simple calculator tool for the agent. +class Calculator(BaseModel): + """ + Perform a math operation on two numbers. + """ + number_one: Union[int, float] = Field(..., description="First number.") + operation: MathOperation = Field(..., description="Math operation to perform.") + number_two: Union[int, float] = Field(..., description="Second number.") + + def run(self): + if self.operation == MathOperation.ADD: + return self.number_one + self.number_two + elif self.operation == MathOperation.SUBTRACT: + return self.number_one - self.number_two + elif self.operation == MathOperation.MULTIPLY: + return self.number_one * self.number_two + elif self.operation == MathOperation.DIVIDE: + return self.number_one / self.number_two + else: + raise ValueError("Unknown operation.") + + +# Here the grammar gets generated by passing the available function models to generate_gbnf_grammar_and_documentation function. This also generates a documentation usable by the LLM. +# pydantic_model_list is the list of pydanitc models +# outer_object_name is an optional name for an outer object around the actual model object. Like a "function" object with "function_parameters" which contains the actual model object. If None, no outer object will be generated +# outer_object_content is the name of outer object content. +# model_prefix is the optional prefix for models in the documentation. (Default="Output Model") +# fields_prefix is the prefix for the model fields in the documentation. (Default="Output Fields") +gbnf_grammar, documentation = generate_gbnf_grammar_and_documentation( + pydantic_model_list=[SendMessageToUser, Calculator], outer_object_name="function", + outer_object_content="function_parameters", model_prefix="Function", fields_prefix="Parameters") + +print(gbnf_grammar) +print(documentation) + +system_message = "You are an advanced AI, tasked to assist the user by calling functions in JSON format. The following are the available functions and their parameters and types:\n\n" + documentation + +user_message = "What is 42 * 42?" +prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant" + +text = create_completion(prompt=prompt, grammar=gbnf_grammar) +# This should output something like this: +# { +# "function": "calculator", +# "function_parameters": { +# "number_one": 42, +# "operation": "multiply", +# "number_two": 42 +# } +# } +function_dictionary = json.loads(text) +if function_dictionary["function"] == "calculator": + function_parameters = {**function_dictionary["function_parameters"]} + + print(Calculator(**function_parameters).run()) + # This should output: 1764 + + +# A example structured output based on pydantic models. The LLM will create an entry for a Book database out of an unstructured text. +class Category(Enum): + """ + The category of the book. + """ + Fiction = "Fiction" + NonFiction = "Non-Fiction" + + +class Book(BaseModel): + """ + Represents an entry about a book. + """ + title: str = Field(..., description="Title of the book.") + author: str = Field(..., description="Author of the book.") + published_year: Optional[int] = Field(..., description="Publishing year of the book.") + keywords: list[str] = Field(..., description="A list of keywords.") + category: Category = Field(..., description="Category of the book.") + summary: str = Field(..., description="Summary of the book.") + + +# We need no additional parameters other than our list of pydantic models. +gbnf_grammar, documentation = generate_gbnf_grammar_and_documentation([Book]) + +system_message = "You are an advanced AI, tasked to create a dataset entry in JSON for a Book. The following is the expected output model:\n\n" + documentation + +text = """The Feynman Lectures on Physics is a physics textbook based on some lectures by Richard Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". The lectures were presented before undergraduate students at the California Institute of Technology (Caltech), during 1961–1963. The book's co-authors are Feynman, Robert B. Leighton, and Matthew Sands.""" +prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{text}<|im_end|>\n<|im_start|>assistant" + +text = create_completion(prompt=prompt, grammar=gbnf_grammar) + +json_data = json.loads(text) + +print(Book(**json_data)) |