diff options
Diffstat (limited to 'examples/save-load-state/save-load-state.cpp')
-rw-r--r-- | examples/save-load-state/save-load-state.cpp | 26 |
1 files changed, 10 insertions, 16 deletions
diff --git a/examples/save-load-state/save-load-state.cpp b/examples/save-load-state/save-load-state.cpp index 6e4d40b9..acc6dbdf 100644 --- a/examples/save-load-state/save-load-state.cpp +++ b/examples/save-load-state/save-load-state.cpp @@ -23,23 +23,17 @@ int main(int argc, char ** argv) { params.n_predict = 16; } - auto lparams = llama_context_default_params(); - - lparams.n_ctx = params.n_ctx; - lparams.seed = params.seed; - lparams.f16_kv = params.memory_f16; - lparams.use_mmap = params.use_mmap; - lparams.use_mlock = params.use_mlock; - auto n_past = 0; auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0); // init - auto * model = llama_load_model_from_file(params.model.c_str(), lparams); + llama_model * model; + llama_context * ctx; + + std::tie(model, ctx) = llama_init_from_gpt_params( params ); if (model == nullptr) { return 1; } - auto * ctx = llama_new_context_with_model(model, lparams); if (ctx == nullptr) { llama_free_model(model); return 1; @@ -54,7 +48,7 @@ int main(int argc, char ** argv) { } // evaluate prompt - llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0), params.n_threads); + llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0)); last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens); n_past += n_prompt_tokens; @@ -79,7 +73,7 @@ int main(int argc, char ** argv) { for (auto i = 0; i < params.n_predict; i++) { auto * logits = llama_get_logits(ctx); - auto n_vocab = llama_n_vocab(ctx); + auto n_vocab = llama_n_vocab(model); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { @@ -91,7 +85,7 @@ int main(int argc, char ** argv) { last_n_tokens_data.push_back(next_token); printf("%s", next_token_str.c_str()); - if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0), params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) { fprintf(stderr, "\n%s : failed to evaluate\n", __func__); llama_free(ctx); llama_free_model(model); @@ -106,7 +100,7 @@ int main(int argc, char ** argv) { llama_free(ctx); // make new context - auto * ctx2 = llama_new_context_with_model(model, lparams); + auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params)); // Load state (rng, logits, embedding and kv_cache) from file { @@ -139,7 +133,7 @@ int main(int argc, char ** argv) { // second run for (auto i = 0; i < params.n_predict; i++) { auto * logits = llama_get_logits(ctx2); - auto n_vocab = llama_n_vocab(ctx2); + auto n_vocab = llama_n_vocab(model); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { @@ -151,7 +145,7 @@ int main(int argc, char ** argv) { last_n_tokens_data.push_back(next_token); printf("%s", next_token_str.c_str()); - if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0), params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) { fprintf(stderr, "\n%s : failed to evaluate\n", __func__); llama_free(ctx2); llama_free_model(model); |